Elektrotechnika 1

| Kategorie: Skripta  | Tento dokument chci!

Předkládaná skripta slouží jako základní studijní materiál v prezenční i kombinované formě studia předmětu Elektrotechnika 1.

Autor: doc. Ing. Jiří Sedláček, CSc. doc. Ing. Miloslav Steinbauer, Ph.D.

Strana 61 z 161

Vámi hledaný text obsahuje tato stránku dokumentu který není autorem určen k veřejnému šíření.

Jak získat tento dokument?






Poznámky redaktora
3.10, jehož schéma nyní překresleno Obr.17 tedy 302010 1030 31 302010 3020 23 302010 2010 12 ,, GGG GG G GGG GG G GGG GG G ++ = ++ = ++ = 3. Celkový proud zdroje nemůžeme jednoduše zjistit, protože nedokážeme snadno vypočítat celkový odpor, který obvod pro napájecí zdroj představuje.19 ) Ukážeme nyní, jak lze pomocí transfigurace analyzovaný obvod přeměnit umožnit tak jeho řešení některou jednoduchých metod.17: Můstkové zapojení metodě transfigurace . Obr. To lze vysvětlit také tak, pokud každý obvod uzavřeme krabičky necháme vystupovat pouze tři vývody, žádným způsobem nejsme zvnějšku schopni obvody vzájemně rozlišit.14: Vrátíme můstku Příklad 3. Jsou rovnice lineární vzhledem odporům hvězdy 302010 RRR Snadno nich proto tyto odpory vypočítáme, jsou-li zadány odpory trojúhelníku (transfigurace ∆→Y): 312312 2331 30 312312 1223 20 312312 3112 10 ,, RRR RR R RRR RR R RRR RR R ++ = ++ = ++ = 3. Příklad 3.17 ) Ve jmenovatelích všech tří zlomků součet odporů trojúhelníku 312312 RRRR ++=Σ .17. 3.18 ) Je možné také pamatovat, pokud vyjádříme všechny hodnoty rezistorů jejich vodivostmi, obdržíme vztahy formálně podobné 3. Ekvivalence je tedy podmíněna splněním tří vztahů: ( ) 2010 312312 312312 RR RRR RRR += ++ + , ( ) 3020 312312 123123 RR RRR RRR += ++ + , ( ) 1030 312312 231231 RR RRR RRR += ++ + . Jediné, zvnějšku měřit, jsou vstupní odpory mezi jednotlivými vývody. Opět se zajímáme proud diagonálou můstku.Elektrotechnika 1 Oba obvody mají být ekvivalentní pokud jde jejich chování vzhledem vnějšímu okolí. Výpočet odporů trojúhelníku odporů hvězdy již tak jednoduchý není, neboť jedná o soustavu nelineárních rovnic (rovnice obsahují součiny hledaných odporů). Výsledkem řešení jsou vztahy (transfigurace Y→∆): 20 1030 103031 10 3020 302023 30 2010 201012 ,, R RR RRR R RR RRR R RR RRR ++=++=++= 3