v okamžiku zapisujeme jako ktt Pro všechny časy ktt pak jeho hodnota
nulová, pro ktt nekonečná.
a) b)
Obr.9: Značení jednotkového (Diracova) impulsu
Pro teorii obvodů velmi významný tzv.
00 ale který mohutnost 1=H Znamená naopak, jeho maximální hodnota je
nekonečná.
b) t
t
Utu
0
2
0 sin)(
π
= pro 0)( =tu vně tohoto intervalu, pak
2
2
sin
22
)
2
cos1(
2
sin 00
00
00
0 0
0
0 0
2
0
000
tU
t
t
t
t
U
dtt
t
U
tdt
t
UH
ttt
=⎥
⎦
⎤
⎢
⎣
⎡
−=−== ∫∫
π
π
ππ
.4. jednotkový impuls (Diracův impuls) )(tδ znázorňovaný graficky
obvykle šipkou dle Obr.8c,
pokud zvolíme provedeme limitní přechod neboť pak bude 100 ttH
pro každé Nastane-li jednotkový impuls jiném než nulovém časovém okamžiku, např. 5.
a) 0)( =tu pro 0<t τt
eUtu −
= 0)( pro 0≥t pak
[ ττ
000
0
0 UeUeUH tt
=−==
∞−
∞
−
∫ .15 )
Rozsah integrace lze prakticky omezit podle konkrétního tvaru impulsu, viz Příklad 5. 5. obdélníkového impulsu Obr.
Příklad 5. se
nazývá jako mohutnost impulsu.
Při různých teoretických úvahách často pracuje impulsem, který nekonečně krátký, tj.8.Elektrotechnika 151
V případě, dobu trvání impulsu mnohem kratší, než doba trvání odezvy příslušné
obvodové veličiny, prakticky neuplatňuje jeho tvar, ale uplatní pouze jeho plocha.16 )
t
0
δ(t)
t
0
δ(t-tk)
tk
. 5.9. Můžeme jej získat např. jednotkový skok, značený )(t1 definovaný jako
0)( =t1 pro 0<t 1)( =t1 pro 0>t 5. distribuci.
c) 0)( Utu pro 0)( =tu vně tohoto intervalu, pak
00
0
0
0
tUdtUH
t
== . 5. Zřejmě nejedná funkci obvyklém pojetí matematické
analýzy, někdy této souvislosti hovoří zobecněné funkci tzv. pro mohutnost napěťového impulsu můžeme psát
∫
∞
∞−
= dttuH 5. Např.4
Vypočtěte mohutnosti impulsů podle Obr. Jedná tzv