a) c)
Obr.
V rovnici byly uvažovány časové okamžiky jako okamžiky, kterých
indukované napětí prochází nulou, kdy začíná končí kladná půlvlna. 5.8: exponenciální impuls, impuls „sinus-kvadrát“, obdélníkový impuls reálný a
idealizovaný. přechodných jevech,
které nastávají zapnutí vypnutí napájecích zdrojů nebo při změně některého obvodového
parametru. kvaziperiodické, vyjadřující přechod mezi
původními novými ustálenými stavy, viz příklady Obr.5 Neperiodické veličiny
Neperiodické časové průběhy vykazují obvody zejména při tzv.
Předpokládejme, byl magnetický tok např. Odezva obvodu pak opět veličinou neperiodickou.7.8: Příklady časových průběhů izolovaných impulsů
t
u(t)
0
t
u(t)
0
u(t)
t
0
t
u(t)
0
U0
t0
idealizovaný tvar
reálný tvar
t
u(t)
0
U0
τ
t
u(t)
0
U0
t0
. Vzhledem derivaci ve
Faradayově indukčním zákoně ovšem znamená, těchto okamžicích nabývá magnetický
tok svých extrémů, svého minima čase maxima čase Efektivní hodnotu pak
můžeme vypočítat základě znalosti činitele tvaru indukovaného napětí jako stUkU . Dále můžeme neperiodickými průběhy setkat při buzení obvodů
izolovanými impulsy, které mohou samy nabývat rozmanitých tvarů, jak ukazují příklady na
Obr. Pro efektivní
hodnotu napětí pak dostáváme praxi často užívaný vztah
mmmsth fNfNfNUkU Φ=Φ=Φ== 44. Pak indukované napětí
harmonické, neboť derivace harmonické funkce opět funkcí harmonickou.424
22
&π
π
.
a) c)
Obr.7: Příklady časových průběhů napětí přechodných jevů
Takovéto průběhy možné plně popsat pouze jejich funkční závislostí celém uvažovaném
časovém intervalu.150 Elektrotechnika 1
mm
TT
is fN
T
N
d
T
N
dt
dt
d
N
T
dttu
T
U
m
m
Φ=Φ=Φ=
Φ
== ∫∫∫
Φ+
Φ−
4
422
)(
2
2/
0
2/
0
. harmonického tvaru. 5. Zpravidla jedná různé druhy doznívajících průběhů exponenciálního typu či
exponenciálně tlumené periodické průběhy, tzv. 5.
5. 5