Elektrotechnika 1

| Kategorie: Skripta  | Tento dokument chci!

Předkládaná skripta slouží jako základní studijní materiál v prezenční i kombinované formě studia předmětu Elektrotechnika 1.

Autor: doc. Ing. Jiří Sedláček, CSc. doc. Ing. Miloslav Steinbauer, Ph.D.

Strana 151 z 161

Vámi hledaný text obsahuje tato stránku dokumentu který není autorem určen k veřejnému šíření.

Jak získat tento dokument?






Poznámky redaktora
8: Příklady časových průběhů izolovaných impulsů t u(t) 0 t u(t) 0 u(t) t 0 t u(t) 0 U0 t0 idealizovaný tvar reálný tvar t u(t) 0 U0 τ t u(t) 0 U0 t0 . 5.7. V rovnici byly uvažovány časové okamžiky jako okamžiky, kterých indukované napětí prochází nulou, kdy začíná končí kladná půlvlna. 5. a) c) Obr. Pak indukované napětí harmonické, neboť derivace harmonické funkce opět funkcí harmonickou. Pro efektivní hodnotu napětí pak dostáváme praxi často užívaný vztah mmmsth fNfNfNUkU Φ=Φ=Φ== 44. kvaziperiodické, vyjadřující přechod mezi původními novými ustálenými stavy, viz příklady Obr. přechodných jevech, které nastávají zapnutí vypnutí napájecích zdrojů nebo při změně některého obvodového parametru. 5. 5.150 Elektrotechnika 1 mm TT is fN T N d T N dt dt d N T dttu T U m m Φ=Φ=Φ= Φ == ∫∫∫ Φ+ Φ− 4 422 )( 2 2/ 0 2/ 0 . Odezva obvodu pak opět veličinou neperiodickou. Dále můžeme neperiodickými průběhy setkat při buzení obvodů izolovanými impulsy, které mohou samy nabývat rozmanitých tvarů, jak ukazují příklady na Obr. Předpokládejme, byl magnetický tok např. Vzhledem derivaci ve Faradayově indukčním zákoně ovšem znamená, těchto okamžicích nabývá magnetický tok svých extrémů, svého minima čase maxima čase Efektivní hodnotu pak můžeme vypočítat základě znalosti činitele tvaru indukovaného napětí jako stUkU . harmonického tvaru.7: Příklady časových průběhů napětí přechodných jevů Takovéto průběhy možné plně popsat pouze jejich funkční závislostí celém uvažovaném časovém intervalu. Zpravidla jedná různé druhy doznívajících průběhů exponenciálního typu či exponenciálně tlumené periodické průběhy, tzv.424 22 &π π .5 Neperiodické veličiny Neperiodické časové průběhy vykazují obvody zejména při tzv. a) c) Obr.8: exponenciální impuls, impuls „sinus-kvadrát“, obdélníkový impuls reálný a idealizovaný. 5