13b vede závěru, jde velikost magnetického toku při zanedbání magnetického
odporu železného jádra, tj.10 průsečíku obou charakteristik pak odečteme velikosti magnetického
toku magnetického napětí jádře 1mzU Všimněte si, překlopená charakteristika
vytíná svislé ose úsek mvmk 1=Φ Formální interpretace podle náhradního obvodu na
Obr.95. Geometrické rozměry magnetického obvodu jsou stejné.
.0;3.
Příklad 4.19b. pro magnetickou indukci Bv.2 Tab.
Vypočítejte velikost magnetického toku magnetickou indukci vzduchové mezeře,
je-li počet závitů N=1000 magnetovací proud I=2. Dále budeme předpokládat, hodnota magnetické
indukce jádře leží intervalu TBz >∈< 9. 4.
Podle věty obvodovém napětí magnetickém poli můžeme psát rovnici
v
v
z
z
v
v
v
zzvvzzmvmzm l
B
l
k
B
fl
B
lBflHlHUUNIF
0
1
0
1
)()(
µµ
+=+=+=+== −−
,
kde označení )(1
zz BfH −
= vyjadřuje funkci inverzní funkci HfB představující
magnetizační křivku daného materiálu, viz Obr. tomu slouží různé způsoby aproximace charakteristik, např.136 Elektrotechnika 1
Vypočítáme magnetická napětí železného jádra pro zvolenou řadu hodnot magnetického toku
a sestrojíme charakteristiku Umz( provedeme stejným způsobem, předpokladu
znalosti magnetizační charakteristiky HfB jako dříve řešených příkladech. 4. metoda interpolace
pomocí polynomu určitého stupně tzv.
Grafická konstrukce řešení sice velmi názorná, avšak časově zdlouhavá také méně
přesná. Přímková
charakteristika vzduchové mezery mvUf=Φ překlopí okolo svislé osy posune ose
vodorovné velikost magnetomotorického napětí 1mF Magnetický odpor vzduchové mezery
je dán rovnicí 4. Abychom však mohli početně pracovat charakteristikami, které jsou získávány
měřením jsou dispozici formě grafů (méně častěji tabulek), nutno nejdříve vyjádřit
analyticky.0 Interpolací provedeme náhradu grafické
závislosti )(1
zz BfH −
= polynomem n–tého stupně znz BgH Závislost monotonní,
bude zřejmě dostatečné volit n=3. 4.4, jehož jádro složeno transformátorových
plechů při činiteli plnění kz=0. 4. Lze totiž sestrojit celkovou magnetizační
charakteristiku mFf=Φ jako součet obou charakteristik předchozích, tj.11 odečteme pro zvolené hodnoty odpovídající hodnoty Hz
a zapíšeme tabulky, vizTab.2. při 0=mzR . 4. Obdrželi jsme rovnici pro hledanou
veličinu, tj.11. 4.
Řešení lze provést následujícím způsobem.5A. Postup znázorněn Obr. Umz( a
)( mvUf=Φ Sčítání provádí pro zvolenou řadu hodnot magnetického toku směru osy
magnetického napětí, neboť jde sériové spojení mzR mvR této výsledné charakteristiky
pak můžeme odečítat magnetické toky pro libovolné hodnoty magnetomotorického napětí
nebo naopak. Hledáme proto koeficienty polynomu
3
3
2
2103 zzzz BaBaBaaBg +++= .
Naznačený postup ukážeme jednoduchém příkladě. metoda nejmenších čtverců.
Z příslušné křivky Obr. Druhá metoda zvláště
vhodná pro aproximaci tabelovaných hodnot, které byly získány měřením, neboť umožňuje
do jisté míry „vyhladit“ chyby, kterými každé měření zatíženo.7
Uvažujte magnetický obvod Příklad 4