Elektrotechnika 1

| Kategorie: Skripta  | Tento dokument chci!

Předkládaná skripta slouží jako základní studijní materiál v prezenční i kombinované formě studia předmětu Elektrotechnika 1.

Autor: doc. Ing. Jiří Sedláček, CSc. doc. Ing. Miloslav Steinbauer, Ph.D.

Strana 107 z 161

Vámi hledaný text obsahuje tato stránku dokumentu který není autorem určen k veřejnému šíření.

Jak získat tento dokument?






Poznámky redaktora
106 Elektrotechnika 1 3. Platnost Tellegenova teorému není nijak ovlivněna charakterem obvodových prvků, je podmíněna pouze platností Kirchhoffových zákonů. a) b) Obr.106) kde značí počet všech větví obvodu, jsou větvová napětí větvové proudy. Energie dodaná obvodu aktivními prvky rovna součtu energie akumulované obvodu formě elektrického magnetického pole energie, která obvodu mění nevratně energii jiného druhu.34 Ověřte platnost Tellegenova teorému pro obvod dle Obr.107) což přímá analogie rovnici 3. Kirchhoffův zákon. Příklad 3.7 Tellegenův teorém Tellegenův teorém matematickou formulací jednoho obecných fyzikálních principů – zákona zachování energie elektrických obvodech.108) postačující, aby tyto soustavy splňovaly II. Pro vyjádření okamžitého výkonu výhodné použít součinu okamžitých hodnot napětí proudu všech větvích obvodu nerozlišovat již charaktery jednotlivých prvků. Pokud totiž použijeme pro všechny větve shodného systému volby kladných smyslů napětí a proudů, tj. Lze také použít formulace pomocí okamžitých hodnot výkonů, tj. Uvažujeme-li totiž další obvod stejným grafem, ale jinou soustavou napětí ku′ proudů ki′ , platí nejen rovnice 0 1 =′′∑= v k kkiu 3.108) Ačkoliv jsou soustavy napětí proudů brány vždy různých (topologicky shodných) obvodů, je pro platnost 3. 3. spotřebičového nebo zdrojového, vede jednoduchý matematický zápis Tellegenova teorému tvaru 0 1 =∑= v k kkiu 3.68. 3. součet okamžitých hodnot příkonů aktivních prvků musí rovnat součtu okamžitých hodnot výkonů prvků pasivních.7.106), ale také další rovnice 0 1 =′∑= v k kkiu 0 1 =′∑= v k kkiu 3.68: ověření Tellegenova teorému . také zajímavý teoretický důsledek. Hodnoty prvků obvodu jsou: Uz1 Uz2 Ω