Předložený studijní materiál slouží jako základní studijní materiál pro distanční formustudia předmětu Elektrotechnika 1. Spolu s dalšími základními předměty jako Matematika 1,Fyzika 1 a Počítače a programování 1 vytváří nezbytně nutné teoretické základy společné provšechny elektrotechnické obory, které jsou potřebné k dalšímu studiu předmětů specializacíve vyšších ročnících studia.
4.2 900 225 280
moderní materiály vzácných
zemin
Pokud jsou pro magnetický obvod kromě parametrů pracovního prostoru předepsány jeho
zbylé geometrické rozměry, např.140 Elektrotechnika 1
Tab. Konečně byly diskutovány zavedené
analogie mezi veličinami magnetických elektrických obvodů: I↔Φ UUm mmn ↔
a RRm také analogie zákonům Kirchhoffovým.25 15
materiál užívaný koncem 30. Bylo ukázáno, že
magnetické obvody železnými jádry jsou obvody nelineární, proto třeba při opačném
postupu, při výpočtu veličin pracovním prostoru obvodu (proces analýzy), užívat postupů
složitějších, známých teorie nelineárních obvodů.2 byl definován pojem magnetického obvodu jednoduchém
obvodu byly vysvětleny základní pojmy používané při jeho popisu. dalším byly diskutovány
magnetizační charakteristiky feromagnetických materiálů křivka prvotní magnetizace a
komutační křivka, dále hysterezní smyčka definovány byly různé druhy permeability:
statická, dynamická, inkrementální, vratná počáteční.
Podkapitola 4. Byla zavedena veličina
magnetický odpor (reluktance) osvětlen Hopkinsonův zákon jakožto
analogie zákonu Ohmovu obvodech elektrických. Látky byly
rozděleny diamagnetické, paramagnetické feromagnetické.5
klasický materiál první
třetiny 20. století
AlNiCo 1.55 8
izotropní ferit 0. Bylo provedeno
rozdělení magnetických materiálů magneticky měkké tvrdé, vysvětlena byla podstata
hysterezních ztrát ztrát vířivými proudy při střídavém magnetování. důvodů konstrukčních, volba vhodného materiálu pro
permanentní magnet jedinou možností, jak magnetický obvod optimalizovat. Bylo
poznamenáno, při uvažování magneticky měkkých materiálů jader zpravidla zanedbáván
jev hystereze pro výpočty užívá pouze magnetizačních charakteristik.
.4 jsou typických příkladech, nejdříve jednoduchých, pak složených
magnetických obvodů, ukázány postupy při výpočtu potřebného magnetomotorického napětí
budicí cívky pro zadané hodnoty veličin pracovním prostoru obvodu (proces syntézy). 4.3: Materiály pro permanentní magnety
Materiál magnetu ][TBr 1−
AmHc ][)( 3
max
−
JmHB Poznámka
kobaltová ocel 0.
V podkapitole 4. Byly popsány význačné body na
hysterezní smyčce: remanentní magnetická indukce koercivita Hc.
V podkapitole 4.6 Shrnutí
Kapitola prohloubila rozšířila dříve získané poznatky magnetickém poli jeho
některé technické aplikace, sice základní metody řešení magnetických obvodů (syntézu i
analýzu) přidruženou tématiku magnetických vlastností látek.35 240 25
SmCo5 0.
V podkapitole 4.23 130 20
anizotropní ferit 0. dostupných
materiálů pak vybíráme ten, jehož užitím nejvíce přiblížíme pracovnímu bodu optQ .5 jsou diskutovány metody řešení způsob optimalizace magnetického
obvodu permanentním magnetem, včetně vysvětlení pojmu energetický součin.95 670 160 195
R2Co17 1.1 725 190 240
NdFeB 1.95 4.3 byla věnována problematice magnetických vlastností látek.
let během světové války
nipermag 0