Vyzařování a šíření elektromagnetických vln je oblastí, se kterou se denně setkáváme aniž bychom si to přímo uvědomovali. Elektromagnetické vlny se šíří prostorem, různé druhyvedení je nutí šířit se podle přání uživatele a také při tom i sloužit. Je proto velmi užitečné znát podmínky pro jejich využívání, především v technické praxi. Vždyť přechod na stále vyšší kmitočty nás nutí respektovat vlnovou povahu jevů i v situací, které byly doménou obvodů. Dnes již nikoho nepřekvapí, že úsek vedení mezi dvěma součástkami v počítači je spíše vedením než jen vodivým spojem.
Zbývá dokončit matematickou část.
. Rovina
S zleva ozářená každý její element zdrojem záření pro poloprostor vpravo.7), ale výsledek lze
jakkoli rozšířit. 7..
y
jayjaxP
dydxee
j
CE
λ
(7.
r
e
CE
jkr
S
−
= (7.
Nejprve vypočteme intenzitu pole rovině překážky jakoby tam přepážka nebyla:
( )
1
1
.34)
Zde zdrojová konstanta, vlnové číslo.
..7: Difrakce polorovině
Rovinu přepážky označíme budeme předpokládat, kolmá spojnici VP.22) je
( )
( )∫
−
=
1
2
2
2,cos
S
jkr
SP
dS
r
e
rnE
j
E
λ
(7.38)
byla zavedena jen pro zkrácení zápisu. Symbolem označena souřadnice hrany ("výška")
přepážky.
Intenzita ozáření E(S)
je dána vztahem 625H624H(10..36)
Při úpravě jsme předpokládali, všechny významné Huygensovy zdroje leží tak blízko
počátku, jmenovatelích ještě položíme dostaneme
( )
∫ ∫
∞ ∞
∞−
−−
=
0
22
.1) pro oblast hrany překážky nahoru, ale
E(S)
= hrany překážky dolů, protože překážka vlny nepropouští.34) už
jen třeba sečíst těmito zdroji vytvořené intenzity bodu odvoláním vztah 627H626H(9.Elektromagnetické vlny, antény vedení 69
r
r x1
0
0y
y
V P
d1 d2
0S
dS(x,y)
r2
n
Obr. Každý element volné
části roviny můžeme tedy považovat Huygensův zdroj ozářený intenzitou 626H625H(7.
Konkrétně budeme sledovat difrakci přepážce polorovině (624H623HObr. 7.
2 dd
ddk
a
+
= (7.. Např. pro vzdálenost je:
⎥
⎥
⎦
⎤
⎢
⎢
⎣
⎡
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
+⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
+≅⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
+⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
+=++=
2
1
2
1
1
2
1
2
1
1
222
11
2
1
2
1
11
d
y
d
x
d
d
y
d
x
dyxdr (7.37)
kde veličina a
21
21
.35)
Integrujeme volné (propustné) části roviny Protože zřejmě největší podíl intenzitě
E(P)
mají Huygensovy zdroje blízko horní hrany, tedy blízko bodu položíme cos( n,r2) 1
a exponentech upravíme. Nyní použijeme Huygensův princip. fyzikálního hlediska úloha vyřešena