Na závěr děkuji recensentu skripta B. Sedlákovi za pozorné pročtení skripta a za cenné připomínky, které pomohly zlepšit text. Můj dík patří rovněž pracovnicím katedry M. Teňákové, J. Beranově a L. Kadeřábkové za velmi přesné a pečlivé zpracování rukopisu a nakreslení obrázků.
(1,145) nemá konstantu náboj není úhrnný náboj uzavřený uvnitř
plochy ale pouze úhrnný volný náboj. (1,126) £.s i. Rovnice
deíinuje zobecněnou Gaussovu větu elektrostatického pole.
Problém silového působení mezi náboji obecném dielektriku značně s’oii-
a budeme zabývat pouze dielektriky tekutými, tj.
z vodiče vytékat radiálně všemi směry prostoru indukční tok
.
1. Intensita elektrického pole Coulombův zákcn pro dielehtriV:ua.ds a
Uvážíme-li, podle rov. Abychom jej zjednodušili, vyloučíme svých úvah pevná dirleít.Odtud
e a
w
čili
( . lze •
použít jak pro isotropní dielektrikum, tak pro vakuum.E dostaneme
O <JS &
Tato rovnice souladu vztahem (1,143) vyjadřuje elektrický indu.
Z toho důvodu Gaussova věta podle rov. (1,145) obecnější platnout
než Gaussova věta vyjádřená pomocí elektrického silového toku, nebcí. Ponoříme-li takového dielektrika relativní peraitjvitcu
£ kulový vodič poloměru rovnoměrně nabitý kladným nábcjca bude
Q
tý. dielektrickými kapal¿i*-
mi nebo plyny. Nerozhoduje tedy indukčním toku
danou plochou vázaný náboj indukovaný povrchu dielektrika,
ale jedině úhrnný volný náboj .3.7. Gaussovy věty
pro vektor intensity pole vakuu liší tím, pravé straně rov.\:'
Y praví, elektrický indukční tok uzavřenou plochou rovci* úfcr: u
volnému náboji obsaženému uvnitř plochy