Kniha je úvodem do metod praktického modelování, analýzy, návrhu a optimalizace elektrotechnických zařízeni na číslicovém počítači. Výklad je doprovázen jednoduchými názornými příklady řešených úloh z různých odvětví elektrotechniky.Kniha je určena inženýrům a technikům, kteří se zabývají moderním návrhem elektrotechnických zařízení.
)
jako
u s0)
Odpovídající náhradní obvod obr. 39, proti němuž však přednost tom, neobsahuje žádný
vnitřní uzel při jeho použití nemůže dojít „přetečení“ počítače ani při vyhodno
cování voltampérové charakteristiky pro velká napětí. stejnosměrné chování diod dominantní
vliv teplotní závislost jejich proudu nasycení. Vývojový diagram obr. Vidíme, téměř ekvivalentní
obvodu obr. 44a linearizovaný model diody pro malé signály odvozený modelu
na obr. Linearizovaný model pro malé
signály, příslušný šumový model
71
. 39. Parametr gDQ představuje diferenciální vodivost diody (2.
Na obr.45). 43b.48) klidovém
kde Is0 Oje hodnota proudu nasycení činitele při teplotě £J0,
Eg šířka zakázaného pásma' polovodiče,
y teplotní exponent diody.
Při simulaci teplotní závislosti diod nestačí považovat závislý teplotě 3
pouze činitel daný vztahem (2.
<p 0[i 0)]
A
A
O
I
K
a )
K
b)
Obr. 44.47), kterou zpravidla linearizujeme
vztahem
kde <P0 stykové napětí při teplotě ,90,
q0 teplotní součinitel stykového napětí. 43c
charakterizuje funkci tohoto modelu. vztahem
Z hlediska vlivu teploty dynamické vlastnosti diod dominantní teplotní
závislost stykového napětí <Pvystupujícího (2. Zjednodušeně můžeme vyjádřit
např.Napětí ¡7, určíme základě daného podmínky
1
Rs 0D(ť