Kniha je úvodem do metod praktického modelování, analýzy, návrhu a optimalizace elektrotechnických zařízeni na číslicovém počítači. Výklad je doprovázen jednoduchými názornými příklady řešených úloh z různých odvětví elektrotechniky.Kniha je určena inženýrům a technikům, kteří se zabývají moderním návrhem elektrotechnických zařízení.
šumových modelech odporníku obr. 22.28)
Obr. Lineární statický a
b) dynam ický model odporníku
s respektováním šumu
Obr.
Stojí povšimnutí, určitých podmínek elektrické soustavě mohou vlivem
tepelné setrvačnosti odporníku nastat vlastní netlumené oscilace (tzv. Modely kondenzátorů
q f(w)
54
. áhradní odel kondenzátoru pro
rychlé změny veličin
2. tepelný
oscilátor).nosti, třeba pro odporník použít dynamický, nikoliv pouze statický model. 23. Rezistory i?p modelují
svod dielektrika odpor přívodů kondenzátoru induktor modeluje indukčnost
jeho přívodů.
H odnota tepelného šumu nezávislá kmitočtu zpravidla udává jako vztažená
vzhledem jednotkové šířce kmitočtového pásma.
Základní popis kapacitoru představuje jeho voltcoulombová charakteristika
vyjadřující závislost náboje kapacitoru jeho napětí Příklad této charakteris
tiky obr. J/IC Boltzmannova konstanta.2.
Modelem akumulace náboje kondenzátoru kapacitor.
V některých aplikacích nelze zanedbat tepelný šum odporníku, vznikající ně
vlivem neuspořádaných pohybů elektronů, jejichž rozkmit roste absolutní teplotou
odporníku.
Vedle nelineárního kapacitoru modelujícího vlastní funkci kondenzátoru jsou
zde ještě ideální prvky modelující různé parazitní jevy. tepelný šum respekto
ván nezávislým zdrojem proudu
kde odpor odporníku,
9 absolutní teplota odporníku ],
k 1,38. příklad
náhradního modelu reálného kondenzátoru pro rychlé změny elektrických veličin. obr.
(2.2. 24