Kniha je úvodem do metod praktického modelování, analýzy, návrhu a optimalizace elektrotechnických zařízeni na číslicovém počítači. Výklad je doprovázen jednoduchými názornými příklady řešených úloh z různých odvětví elektrotechniky.Kniha je určena inženýrům a technikům, kteří se zabývají moderním návrhem elektrotechnických zařízení.
Pro dostaneme duální Shannovu metodu.47) pro
metodu, která duální. Tyto metody jsou opět
iterační. Iterační proces ukončíme, jestliže norma
gradientu klesne pod předepsanou mez.
Duální metody proměnnou metrikou používáme zejména tehdy, je-li třeba
určit optimální diference pro numerický výpočet parciálních derivací účelové funkce. Nejčastěji vybíráme matici podle vztahu
— (8'47>
kde
d' p
~*~yy
a volitelný parametr. Pro j/d‘(y p)
dostaneme duální Hoshinovu metodu.konci každého iteračního kroku změníme vektor vektor položíme
w* Vektor vybíráme podle vztahu
(g*Y d
w* d
yld
Na každých iteračních krocich, kde počet proměnných, vektor vynuluje. Nakonec položíme
x* ->/, -+G. Pro yjdl(y dostaneme duální Bar-
nesovu metodu. Vhodnou volbou parametru získáme všechny nejdůle
žitější duální metody proměnnou metrikou. Dále vypočteme
hodnoty
d x
y 9
P t*g
a základě těchto hodnot změníme matici matici G*.
456
. Pro dostaneme duální Davido-
novu metodu. každém iteračním kroku vypočítáme směr řešením soustavy
lineárních rovnic
Gs* -g
provedeme jednorozměrnou minimalizaci
f(x í*s*) min f(x ts*)
teE i
a položíme t*s* x*, f(x t*s*) ->/* g(x t*s*) g*. Podstata duality spočívá tom, rovnosti 1
plyne rovnost H*G* 1.
Z důvodů, které budou uvedeny později, někdy místo metod proměnnou
metrikou používají duální metody proměnnou metrikou. Nechť jsou matice vyhovující vztahu (8.46) pro některou
metodu proměnnou metrikou jsou matice vyhovující vztahu (8. prvním iteračním kroku používají hodnoty f(x) g(x),
kde počáteční odhad minima účelové funkce pokládá kde je
jednotková matice