Využití počítače při elektrotechnických návrzích

| Kategorie: Kniha  | Tento dokument chci!

Kniha je úvodem do metod praktického modelování, analýzy, návrhu a optimalizace elektrotechnických zařízeni na číslicovém počítači. Výklad je doprovázen jednoduchými názornými příklady řešených úloh z různých odvětví elektrotechniky.Kniha je určena inženýrům a technikům, kteří se zabývají moderním návrhem elektrotechnických zařízení.

Vydal: Alfa, vydavateľstvo technickej a ekonomickej litera­túry, n. p., 815 89 Bratislava, Hurbanovo nám. 3 Autor: Heřman Mann

Strana 167 z 480

Vámi hledaný text obsahuje tato stránku dokumentu který není autorem určen k veřejnému šíření.

Jak získat tento dokument?






Poznámky redaktora
) nezávislá, metoda nazývá stacionární. vidíme, uvažovaném případě existuje možnost tří navzájem různých řešení 1u*, *U* 3ug. Teorie iteračních metod dává dříve uvedené otázky odpověď jen před­ pokladu, výchozí přibližné řešení leží „dostatečné“ blízkosti přesného řešení..2.. 4.) těchto bodech apod. Na (4.Jestliže nápř. 86b příslušná odezva sinusové buzení e(t).11) Iterační metoda charakterizovaná tímto předpisem nazývá p-kroková. aby platilo lim (k) x* k~* oo Posloupnost přibližných řešení (k)} základě určité iterační metody nejčastěji vytvářena podle jejího rekurentního předpisu, který např.. pevný bod této transformace, transformující sám sebe, neboť x* F(x*, ,. Pokud je funkce F(., x*) Při použití určité iterační metody praxi nás zajímá především: a) jakých podmínek vytvořená posloupnost přibližných řešení konverguje k přesnému řešení, b) jaká rychlost této konvergence, c) jaká výpočetní účinnost použité metody. ŘEŠENÍ SOUSTAV NELINEÁRNÍCH ALGEBRAICKÝCH ROVNIC 4.3) závisí použité metodě. Numerické metody pro řešení soustav nelineárních algebraických rovnic jsou vesměs iteračního charakteru. obr.. tvaru X(*+D F(k>(x (k>, (k~ J), . derivace funkce f(., aby konvergovala k určitému kořenu soustavy (4.. obr.. Jako argument funkce F(. Jejich cílem vytvořit pro počáteční odhad řešení x (0) takovou posloupnost přibližných řešení (0), (1), <2), . diodu obvodu obr.11) můžeme pohlížet jako transformaci bodů (k\ (fc-1), .) vztahu (4. většině případů nám proto nezbývá nic jiného než obrátit metodám numerickým, jejichž možnosti dovolily plně využít teprve číslicové počítače., (fc_p+1)) (4., (k~p+1) do bodu (k+1). 86a příslušná stejnosměrná charakteristika uD{e), která tomto případě vykazuje hysterezi (čárkovaný úsek charakteristiky odpovídá nestabilnímu stavu obvodu). stacionárním případě kořen představuje tzv.1. kvadratické nebo kubické rovnice)..3), tj. Analyticky uzavřeném tvaru lze řešit nelineárních úloh vysky­ tujících praxi jen velmi úzkou třídu (jako např. Vlastnosti iteračních metod Grafickými metodami lze řešit pouze jednoduché úlohy, ještě jen velmi ome­ zenou přesností. 83a nahradíme tunelovou diodou, z grafické konstrukce obr.) mohou vystupovat vedle bodů např. Způsob vytvoření funkce F(k\ funkce f(..2. 167