Využití počítače při elektrotechnických návrzích

| Kategorie: Kniha  | Tento dokument chci!

Kniha je úvodem do metod praktického modelování, analýzy, návrhu a optimalizace elektrotechnických zařízeni na číslicovém počítači. Výklad je doprovázen jednoduchými názornými příklady řešených úloh z různých odvětví elektrotechniky.Kniha je určena inženýrům a technikům, kteří se zabývají moderním návrhem elektrotechnických zařízení.

Vydal: Alfa, vydavateľstvo technickej a ekonomickej litera­túry, n. p., 815 89 Bratislava, Hurbanovo nám. 3 Autor: Heřman Mann

Strana 167 z 480

Vámi hledaný text obsahuje tato stránku dokumentu který není autorem určen k veřejnému šíření.

Jak získat tento dokument?






Poznámky redaktora
Vlastnosti iteračních metod Grafickými metodami lze řešit pouze jednoduché úlohy, ještě jen velmi ome­ zenou přesností.) mohou vystupovat vedle bodů např. vidíme, uvažovaném případě existuje možnost tří navzájem různých řešení 1u*, *U* 3ug. Na (4.11) Iterační metoda charakterizovaná tímto předpisem nazývá p-kroková. 83a nahradíme tunelovou diodou, z grafické konstrukce obr. 86a příslušná stejnosměrná charakteristika uD{e), která tomto případě vykazuje hysterezi (čárkovaný úsek charakteristiky odpovídá nestabilnímu stavu obvodu). Jejich cílem vytvořit pro počáteční odhad řešení x (0) takovou posloupnost přibližných řešení (0), (1), <2), .. 4.) těchto bodech apod. 167 . kvadratické nebo kubické rovnice). Teorie iteračních metod dává dříve uvedené otázky odpověď jen před­ pokladu, výchozí přibližné řešení leží „dostatečné“ blízkosti přesného řešení. Pokud je funkce F(. derivace funkce f(., x*) Při použití určité iterační metody praxi nás zajímá především: a) jakých podmínek vytvořená posloupnost přibližných řešení konverguje k přesnému řešení, b) jaká rychlost této konvergence, c) jaká výpočetní účinnost použité metody. obr..3) závisí použité metodě.) nezávislá, metoda nazývá stacionární.2. pevný bod této transformace, transformující sám sebe, neboť x* F(x*, ,. obr... Analyticky uzavřeném tvaru lze řešit nelineárních úloh vysky­ tujících praxi jen velmi úzkou třídu (jako např. tvaru X(*+D F(k>(x (k>, (k~ J), .Jestliže nápř.., (k~p+1) do bodu (k+1). diodu obvodu obr. Numerické metody pro řešení soustav nelineárních algebraických rovnic jsou vesměs iteračního charakteru. ŘEŠENÍ SOUSTAV NELINEÁRNÍCH ALGEBRAICKÝCH ROVNIC 4., (fc_p+1)) (4.1.) vztahu (4...11) můžeme pohlížet jako transformaci bodů (k\ (fc-1), . většině případů nám proto nezbývá nic jiného než obrátit metodám numerickým, jejichž možnosti dovolily plně využít teprve číslicové počítače.2. stacionárním případě kořen představuje tzv. aby platilo lim (k) x* k~* oo Posloupnost přibližných řešení (k)} základě určité iterační metody nejčastěji vytvářena podle jejího rekurentního předpisu, který např.. 86b příslušná odezva sinusové buzení e(t). Způsob vytvoření funkce F(k\ funkce f(. Jako argument funkce F(.3), tj., aby konvergovala k určitému kořenu soustavy (4