Ostrogradskij zabýval variačním počtem, jehož základy vytvořil Euler,
a roce 1834 uveřejnil rozsáhlou rozpravu výpočtech variací mezních integrálů,
v níž podal přesné elegantní řešení tohoto obtížného problému.
Odvodil jej již roce 1834 publikoval jej zmíněné práci současně jinými
matematickými úvahami.
Ne nadarmo znamenitý francouzský matematik astronom Laplace říkal:
„Čtěte Eulera! učitelem nás všech.
Jeho práce přinesly již života zaslouženou slávu mezi všemi vědci jak
v Rusku, tak Západě. Západní věda opět mlčí tom,
kdo autorem tohoto vzorce.
Na Západě hojně užívají tohoto principu, jejž objevil náš rodák, ale nikdy
neuvádějí jeho jménp.
Avšak západní věda snaží mnohé práce velkého ruského učence zatajit. Tato
theorie, nezbytná pro řešení mnoha praktických problémů, učí, jak nutno
56
.Euler, zabývaje theorií čísel, vyslovil tomto oboru základní věty, na
nichž celá tato část matematiky vybudována.
Ostrogradskij odvodil velmi důležitý vzorec, který matematické formě
vyjadřuje „princip nejmenšího účinku" obecný princip mechaniky, jejž on
objevil."
★ ★
*
Slavných vědeckých vítězství dobyl akademik Michail Vasiljevič Ostrograd-
skij, jeden vynikajících matematiků prvé poloviny XIX.
Veliký duch Ostrogradského nebyl omezen jen hranicemi ryzí matematiky. „Staň Ostrogradským", říkali již tehdy mladým lidem,
kteří přicházeli universitu. jeho tvůrcem zcela jistě Ostrogradskij. Mnoho toho,
co tento vynikající učenec vytvořil, stalo zlatým pokladem matematické vědy. Této formule Ostrogradského
použil příklad anglický vědec Maxwell, když tvořil svou matematickou theorii
elektřiny.
Ne vždy Západě zmiňují tom, Ostrogradskij tvůrcem znamenité
formule pro převádění objemového integrálu integrál plošný; oblast jejího
použití jak vědě, tak technice velmi široká. záhodno poznamenat, Sarrus,
jak později zjistilo, problém hanebně zamotal nakonec podal úplně vadné
řešení. století.
Ostrogradskij soustavně pracoval problémech, které řešily také fysika me
chanika.
Z díla geniálního Eulera čerpala mnohá pokolení vědců celého světa. Avšak pařížská
Akademie „nevzala vůbec vědomí" tuto klasickou práci roce 1840 při
soudila cenu francouzskému matematikovi Sarrusovi práci, věnovanou témuž
thematu, kterým zabýval Ostrogradskij.
Ve všech učebnicích matematické analysy uvádí vzorec, jehož pomocí
lze provést výpočet vícenásobného integrálu tím, převede integrál
mnohem jednodušší integrál „méněnásobný", než byl integrál původní. Západní věda spojuje objev tohoto vzorce jmény Gausse Greena.
Důležité vzorce našel Ostrogradskij theorii přibližných výpočtů. to
jedna nejdůležitějších formulí vyšší matematiky