V publikaci je nejdříve stručně vysvětlen význam obloukového svařováni a základní pojmy z teorie svařovacího oblouku včetně otázek stability svařovacího oblouku a zdrojů proudu. Těžiště knihy leží v části, ve které jsou probrány všechny druhy ovládání výstupního proudu svařovacích transformátorů, způsoby výpočtu a příklady návrhu a konstrukce svařovacích transformátorů. Závěr knihy je věnován praktickým radám, bezpečnosti a ukázkám některých transformátorů starší a nové koncepce.Kniha je určena technikům, konstruktérům, elektromontérům, údržbářům a širokému okruhu zájemců o konstrukci a návrh svařovacích transformátorů a jejich použití v praxi.
Katoda může být kovová nebo nekovová (uhlík), může mít tvar
tenkého válce nebo kovové desky.náboj
Obr.
Pro napětí oblouku platí
U0 ř/k -f~ U$\ -f- (11)
Protože katodová anodová oblast jsou vzhledem délce obloukového
sloupce velmi malé, lze říci, napětí oblouku přímo úměrné
délce oblouku l0.
Oblouk nestacionární katodovou skvrnou vyskytuje např. thoriované wolfra
mové elektrodě pro její vysokou teplotu tavení; obloukový sloupec se
u katody nezúží.
kladny prostorový náboj anodový ,
. katodové oblasti dosahuje teplota
až 4270 hustota proudu asi 103 A/cm2., prostorový
obloukový sloupec . Oblouk podstatě dělí tři části (obr. při
svařování nebo navařování lehkotavitelných kovů (hliník) argonu.Mezi nejjednodušší pozorovatelné vlastnosti oblouku patří jeho
tvar. Oblouk stacionární katodovou skvrnou vykazuje
zúžení obloukového sloupce katody, ale katodová skvrna nemění. Rozdělení napětí oblouku
Uk napěťový úbytek katodové oblasti;
Vsi napětí obloukového sloupce;
Ua napěťový úbytek anodové oblasti
Oblouk bez katodové skvrny vznikne např. 4). to
katodová oblast,
obloukový sloupec,
anodová oblast.
Oblouk značně zúžený sloupec katodové oblasti skvrna se
35
. Oblouk může mít tři
podoby [3]:
oblouk bez katodové skvrny,
oblouk stacionární katodovou skvrnou,
oblouk nestacionární katodovou skvrnou