Směrové a družicové spoje (přednášky)

| Kategorie: Skripta  | Tento dokument chci!

Mikrovlnné spoje jsou důležitým prostředkem pro přenos informace a jako takové se značnou měrou uplatňují v různých sítích. Vývoj v posledních letech je charakterizován dynamickým přechodem od analogových systémů k digitálním. Tento proces bývá nazýván procesem konvergence. Rozvoj komunikace všeho druhu od hlasové až po multimediální prostřednictvím lokálních ale především globálních sítí (Internetu) způsobil zásadní změny v technologiích používaných pro přenos digitálních signálů. Terestrické mikrovlnné systémy, nazývané směrové spoje ...

Vydal: FEKT VUT Brno Autor: UREL - Miroslav Kasal

Strana 56 z 111

Vámi hledaný text obsahuje tato stránku dokumentu který není autorem určen k veřejnému šíření.

Jak získat tento dokument?






Poznámky redaktora
6) kde tzv. Z druhého Keplerova zákona vyplývá, pohyb tělesa eliptické oběžné dráze je značně nerovnoměrný tím více, čím větší výstřednost dráhy. Rychlost tělesa perigeu je proto výstředné dráhy několika násobkem rychlosti apogeu.54 Uvedených pět veličin spolu časovým údajem vztaženému konkrétní pozici satelitu dráze (např.3) Pohybuje-li těleso uzavřené dráze, pak jednotku času opíše jeho průvodič průměrně úhel P n π2 = [rad. nich jednoznačně určit poloha obíhajícího tělesa kosmickém prostoru pro libovolný časový okamžik.1) Úhel který svírá vektor rychlosti s průvodičem tělesa rovině dráhy, obr.s-1 ; (7. Ze známe pravé anomálie určíme okamžitou vzdálenost tělesa těžiště soustavy, tj. Řešení Keplerovy rovnice konverguje rychle. Pravá anomálie střední anomálií totožná pouze případě, dráha přesně kruhová 0). Při nerovnoměrném pohybu eliptické dráze dána rovnicí         − + = 2 tan 1 1 arctan2 E e e f [rad; rad] (7.7) Jde transcendentní rovnici, kterou řešíme iterací. excentrická anomálie. prvním kroku dosadíme pravé straně rovnice vypočteme odhad E1. Její hodnotu získáme řešením Keplerovy rovnice EeME sin⋅+= [rad; rad] (7. perigeu 0 a apogeu π.3, lze vypočítat . 7. čas průchodu perigeem), nazýváme elementy čili prvky dráhy (Keplerian elements). druhém kroku vypočteme při pravé straně, atd. Třetí Keplerův zákon vyjadřuje relaci mezi dobou oběhu tělesa periodou velikostí hlavní poloosy a 2 3 2       = π µ P a [km; (7. Výpočet ukončíme, je-li |En En-1| přičemž stanovíme podle požadované přesnosti výpočtu.s-1 , (7.5) Střední anomálie tedy vyjadřuje časový údaj ale úhlové míře. délku průvodiče ( ) fe ea r cos1 1 2 ⋅+ − = [km; km, rad] (7. Násobíme-li střední pohyb dobou která uplynula průchodu tělesa perigeem dostaneme střední anomálii M tnM [rad; rad. Zákon říká, plocha opsaná průvodičem obíhajícího tělesa časovou jednotku stejná.4) Veličinu nazýváme středním pohybem tělesa.8) Okamžitá rychost družice dána rovnicí (7