Kniha podává zhuštěnou formou celou látku silnoproudé elektrotechniky, a to jak z hlediska vysvětlení principů funkce a vlastností silnoproudých strojů, přístrojů a zařízení, tak i z hlediska jejich provozu, výpočtu a návrhu. V knize jsou probrána nejen zařízení klasická, ale i výhledově perspektivní, např. výkonová elektronika, supravodiče, jaderné elektrárny apod.Kniha je určena nejširšímu okruhu inženýrů a techniků, zajímajících se o obor silnoproudé elektrotechniky nebo pracujících v tomto oboru.
8.
16.7.
Další důležitou vlastností jsou ničivé účinky živé tkáně. jako produkty zachycení neutronů jádrem paliva (transurany). 905c, Charak
teristické parametry těchto článků jakožto zdrojů elektrické energie odpovídají parametrům
termoelektrických (TEL) termoemisních (TEM) měničů energie.7. PRINCIP PŘEMÉNY
Metoda elektroplynodynamické (dále zkráceně EPD) přeměny energie spočívá tom,
že pohybová energie proudícího plynu, který sebou unáší elektricky nabité částice, pře
měňuje elektrickém poli elektrickou energii.Nepřímé nuklidové články nejčastěji zakládají principu termoelektrické nebo
řidčeji termoemisní přeměny energie. Stínícími kryty lze poměrně
snadno omezit záření částic ¡3, odstínění záření však zapotřebí krytů značné
hmotnosti. svým potenciálem jednotek desítek kilovoltů vytváří koronový výboj, kte
rým ionizují unášené hmotné částice. pro napájení lunárních stanic apod. Po210, nebo Cm242. Schéma jejich uspořádání obr. Protože proudění plynu EPD kanálu může být
vyvoláno nebo ovlivňováno rozdílem teplot, možné tyto měniče vhodně začleňovat do
termodynamického cyklu, při němž lze teplo přeměňovat přímo elektrickou energii.1.
. Nosný plyn, např.
208. Elektroplynodynamická přeměna energie ([268], [282], [283])
16.
V současné době radionuklidové zdroje elektrické energie využívají lékařství pro
kosmický výzkum.
Termoemisní nuklidové články, vyžadující svému provozu vysoké teploty emitoru
(větší než 1500 K), nejsou ještě tak propracovány jako termoelektrické články.
Elementární EPD měnič (obr.
16. Tyto zdroje elektrické energie konstruují
nejčastěji výkony řádově vyznačují mimořádnou spolehlivostí možností dlouho
dobé funkce; jejich provoz nezávislý vnějších podmínkách. POUŽÍVANÉ RADIOAKTIVNÍ MATERIÁLY
Vlastnosti některých radioaktivních izotopů pro nuklidové články jsou uvedeny tab. vzduch, dusík, inertní plyn apod.1. Dosahují účin
ností kolem %.8. Opatřují obvykle
zářiči nepříliš velkou energií. Budoucí širší uplatnění pro civilní pozemskou potřebu nelze zatím před
pokládat pro mimořádnou nákladnost potřebných radionuklidů. STAV VÝHLEDY POUŽITÍ
Nuklidové články nejmenších výkonů, řádově mikrowatty miliwatty, používají
převážně lékařství konstruují nejčastěji jako fotoelektrické zdroje. důsledku složitosti
a nákladnosti metod pro vytěžování radionuklidů jsou ceny získávaných nuklidů velmi vy--
soké, což značně ovlivňuje možnosti jejich použití. Vhodnými radionuklidy jsou těchto případech prometeum
Pm147, tritium H3, síra S35.
Radionuklidy vznikají jaderných reaktorech jako produkty štěpení paliva (uranu, plutonia),
popř., němž jsou rozptýleny jemné
hmotné částice velikosti jednotek mikrometru, vstupuje kanálu přes ionizační elektrodu
(ionizátor).2. Proto používají při nároč
ných úkolech kosmického výzkumu, např. Použije-li pro ohřev
Cm242, lze použít vysokoteplotních TEL článků.
16. Pro volbu určitého radionuklidu důležitý jeho poločas (doba níž klesne vyzařovaný
výkon %), druh energie záření (částic nebo fotonů) uvolňovaný měrný výkon. Účinnost
těchto zdrojů asi zatímco fotoelektrických pouze asi %. dosažení
uvedených teplot hodí zářiče velkou energií, např.
Pro větší výkony hodí termoelektrické nuklidové články. 906) tvořen EPD kanálem zhotoveným izolačního
materiálu, který vstupu výstupu opatřen vodivými elektrodami, atraktorem ko
lektorem