Kniha podává zhuštěnou formou celou látku silnoproudé elektrotechniky, a to jak z hlediska vysvětlení principů funkce a vlastností silnoproudých strojů, přístrojů a zařízení, tak i z hlediska jejich provozu, výpočtu a návrhu. V knize jsou probrána nejen zařízení klasická, ale i výhledově perspektivní, např. výkonová elektronika, supravodiče, jaderné elektrárny apod.Kniha je určena nejširšímu okruhu inženýrů a techniků, zajímajících se o obor silnoproudé elektrotechniky nebo pracujících v tomto oboru.
Proto používají při nároč
ných úkolech kosmického výzkumu, např. 906) tvořen EPD kanálem zhotoveným izolačního
materiálu, který vstupu výstupu opatřen vodivými elektrodami, atraktorem ko
lektorem. pro napájení lunárních stanic apod. POUŽÍVANÉ RADIOAKTIVNÍ MATERIÁLY
Vlastnosti některých radioaktivních izotopů pro nuklidové články jsou uvedeny tab. jako produkty zachycení neutronů jádrem paliva (transurany).Nepřímé nuklidové články nejčastěji zakládají principu termoelektrické nebo
řidčeji termoemisní přeměny energie. 905c, Charak
teristické parametry těchto článků jakožto zdrojů elektrické energie odpovídají parametrům
termoelektrických (TEL) termoemisních (TEM) měničů energie. důsledku složitosti
a nákladnosti metod pro vytěžování radionuklidů jsou ceny získávaných nuklidů velmi vy--
soké, což značně ovlivňuje možnosti jejich použití. Budoucí širší uplatnění pro civilní pozemskou potřebu nelze zatím před
pokládat pro mimořádnou nákladnost potřebných radionuklidů.8. Po210, nebo Cm242. vzduch, dusík, inertní plyn apod. Pro volbu určitého radionuklidu důležitý jeho poločas (doba níž klesne vyzařovaný
výkon %), druh energie záření (částic nebo fotonů) uvolňovaný měrný výkon.
16.
Pro větší výkony hodí termoelektrické nuklidové články. Nosný plyn, např. Schéma jejich uspořádání obr.
Termoemisní nuklidové články, vyžadující svému provozu vysoké teploty emitoru
(větší než 1500 K), nejsou ještě tak propracovány jako termoelektrické články.7.1.1. PRINCIP PŘEMÉNY
Metoda elektroplynodynamické (dále zkráceně EPD) přeměny energie spočívá tom,
že pohybová energie proudícího plynu, který sebou unáší elektricky nabité částice, pře
měňuje elektrickém poli elektrickou energii. svým potenciálem jednotek desítek kilovoltů vytváří koronový výboj, kte
rým ionizují unášené hmotné částice.2.
Elementární EPD měnič (obr.
16. STAV VÝHLEDY POUŽITÍ
Nuklidové články nejmenších výkonů, řádově mikrowatty miliwatty, používají
převážně lékařství konstruují nejčastěji jako fotoelektrické zdroje. Vhodnými radionuklidy jsou těchto případech prometeum
Pm147, tritium H3, síra S35.7.
Radionuklidy vznikají jaderných reaktorech jako produkty štěpení paliva (uranu, plutonia),
popř. Použije-li pro ohřev
Cm242, lze použít vysokoteplotních TEL článků.
V současné době radionuklidové zdroje elektrické energie využívají lékařství pro
kosmický výzkum. Dosahují účin
ností kolem %., němž jsou rozptýleny jemné
hmotné částice velikosti jednotek mikrometru, vstupuje kanálu přes ionizační elektrodu
(ionizátor).
Další důležitou vlastností jsou ničivé účinky živé tkáně.
. Protože proudění plynu EPD kanálu může být
vyvoláno nebo ovlivňováno rozdílem teplot, možné tyto měniče vhodně začleňovat do
termodynamického cyklu, při němž lze teplo přeměňovat přímo elektrickou energii.
16. Tyto zdroje elektrické energie konstruují
nejčastěji výkony řádově vyznačují mimořádnou spolehlivostí možností dlouho
dobé funkce; jejich provoz nezávislý vnějších podmínkách. Účinnost
těchto zdrojů asi zatímco fotoelektrických pouze asi %. Elektroplynodynamická přeměna energie ([268], [282], [283])
16. Stínícími kryty lze poměrně
snadno omezit záření částic ¡3, odstínění záření však zapotřebí krytů značné
hmotnosti. dosažení
uvedených teplot hodí zářiče velkou energií, např.8.
208. Opatřují obvykle
zářiči nepříliš velkou energií