Kniha podává zhuštěnou formou celou látku silnoproudé elektrotechniky, a to jak z hlediska vysvětlení principů funkce a vlastností silnoproudých strojů, přístrojů a zařízení, tak i z hlediska jejich provozu, výpočtu a návrhu. V knize jsou probrána nejen zařízení klasická, ale i výhledově perspektivní, např. výkonová elektronika, supravodiče, jaderné elektrárny apod.Kniha je určena nejširšímu okruhu inženýrů a techniků, zajímajících se o obor silnoproudé elektrotechniky nebo pracujících v tomto oboru.
68b), která otáčí
v záporném smyslu kolem počátku.
Obr. časové přímky (obr. vyjádřit tvaru
RlUliP) HP)] lh(p) I3(p)] Ro[h(p) h(ř)] +Cip p
Uc20
= 0
Lsp[h(p) Í3(p)] 7.použitím rovnic (4-198) (4-200) lze potom např. pro napětí)
u sin (cot <p) [e1<“<+*) -i(i»í+ «i)i
2)
(4-202)
V lineárních operacích (sčítání, násobeni konstantou, derivování, integrování) charakter
průběhu nemění důsledku vlastností exponenciální funkce) daná matematická operace
ovlivňuje pouze amplitudu fázi průběhu. lineárním obvodu mají potom všechny veličiny
harmonický průběh stejného kmitočtu.
*) Dříve používal název časový vektor
140
. soustavu rovnic (4-176) popisující
elektrický obvod obr.3(120 í'so) Ra[h(j>) (?)] +
+ Ä4/2O) Ro[h(p) h(p)] 0
Rilh(p) h(p)] [h(p) I3(P)1 +
Cíp p
+ L3p[h(j>) h(p)] 3(120 130) Rs[h(p) h(j>)\ U(p)
c) Symbolická metoda
Jedním technicky nejdůležitějších průběhů eletrických veličin harmonický prů
běh, který lze obecně vyjádřit tvaru (např. 68. 68a) nebo průmětem „stojícího,, fázoru tzv.202) vychází
z rovnice
u Im{ei<a,,+«’>} {Um el“*} (4-203)
kde komplexní veličinu vyjádřenou výrazem
Um eJ* (4-204)
nazveme fázorem.*) Podle (4-203) potom harmonický průběh vyjádřen bud průmětem
fázoru otáčejícího kladném smyslu úhlovou rychlostí imaginární souřadné osy
(obr. Rotující fázor
Nejčastější geometrická představa harmonického průběhu podle (4