Nové zdroje energie

| Kategorie: Kniha  | Tento dokument chci!

Publikace se zabývá možnostmi nekonvenčního využití zdrojů energie, a to využitím energie sluneční, energie vodní a moderními způsoby využití energie větru, dále energie geotermální, energie z Vesmíru, energie moře, energie termonukleární a způsoby přímé přeměny energie. Ukazuje způsoby exploatace druhotných zdrojů energie, kterými jsou odpadní suroviny, odpadní plyny, odpadní teplo. Text je doplněn tabulkovými přehledy a ilustracemi. Určeno nejširšímu okruhu čtenářů.

Vydal: Státní nakladatelství technické literatury Autor: Rudolf Balák, Karel Prokeš

Strana 158 z 208

Vámi hledaný text obsahuje tato stránku dokumentu který není autorem určen k veřejnému šíření.

Jak získat tento dokument?






Poznámky redaktora
159 . Poslední verze typu T-10 pochází 1975. Term onukleární fúze měla tedy kontrolované rozhořet při teplotě mil. návrh termonukleární elektrárny podle akademika Kapici (SSSR) (obr. Lawsonovým kritériem. doby byla několikrát přestavěna zdokonalena. Oe. rezonanci akustických kmitů bude plazmy přivádět mikrovlnná energie, která rytm pulsů vyvolá vždy term onukleární řetěz spojováním jader deuteria tritia. 0,06 součet 1013 částic (cm~3s). Předpokládá 60% účinnost energetické přeměny. K plazmě hustotě 100 bil. Tato podmínka udána tzv. čtvrté generaci jsou Alcator (USA), T-10 (SSSR), PLT (USA) Gleo (Velká Británie). Aby termonukleární reakce vznikla udržela se, nutné reaktoru zahřát určité množství paliva (n) potřebnou teplotu udržet určitou dobu po­ hrom adě. podstatě jde kombinaci toroidní komory jaderného reak­ toru. Bylo při tom dosaženo těchto vý­ sledků: teplota plazmy mil. Magnetické pole to­ hoto proudu udrží vzniklou plazm ose toroidu, takže nedotýká stěn komory. O bjem plazmy těchto reaktorů je: dnešní T-10 -60 mají m Evropský 200 T-20 400 3. Pátá generace stane základem velkých toroidních reaktorů 2000. páté generaci budou (Japonsko), R (USA), (Evropa) T-20 (SSSR). V 1960 byla SSSR postavena Kurčatovově institutu první toroidní ko­ m ora světě. Mezi třetí generaci patří typy T3 (SSSR), Stellarator (USA), (SSSR). Zajímavý např. T-10 prstenec prům ěru světlost toroidní komory cm. Alternátor přemění rozdíl mezi energií vydanou turbínou spotřebovanou kompresorem elektrickou energii. plynu toroidní trubici vznikne výboj, plyn se ionizuje „kruhový proud“ jej zahřívá vysokou teplotu. Plazma byla sevřena kovové nádobě obklopené cívkami supravodivých ag­ netů. Mezi čtvrtou apátou generací bude asi hybridní reaktor. Skupina vědců Fyzikálního ústavu SSSR pod vedením akademiků A. Než přikročí konstrukci termonukleárních reaktorů páté generace, bude pravděpodobně zkonstruován smíšený nebo hybridní termonukleární reaktor. Plazma sevře­ na magnetickým polem tis. Jeho výhodou bude příprava aktivního štěpného ateriálu paliva pro provoz uranových reaktorů, ještě desetkrát rychleji než modernějších soudobých rychlých reaktorů. Pro fúzi deuteria tritia činí hodnota Lawsonova kritéria 10l4 jader sekun­ du při teplotě mil. hybridních reaktorů předpokládá výkon 6000 MW.Elektrický proud prim ární cívce transformátoru indukuje elektromotorické na­ pětí sekundární cívce. 115. 116). Vývoj toroidních komor zachycuje obr. Uvažuje tom, pulsace plazmy se využilo přímé přeměně termonukleární energie elektrickou již uvnitř nádo­ by reaktoru. Vývoj termonukleárních reaktorů ubírá jiným směry. částic cm3po dobu Zatím nepodařilo. Pulsující termonukleární reakce bude ohřívat okolní plyn. Pro samotné deuterium byla tato teplota ještě lOOx vyšší. Jeho cirkulaci obstará turbosoustrojí plynovou turbínou izotermickým kompresorem chlazeným vodou, který bude vracet plyn oběhu zpět nádoby