Minia Aplikační příručka Přepěťové ochrany

| Kategorie: Montážní návody Návody k obsluze Katalog  | Tento dokument chci!

Princip ochrany před bleskem a přepětím. Aplikační rozdělení. Výběr přepěťových ochran podle typu instalace. Výpočtový program Prozisk. Zásady při instalaci přepěťových ochran. Katalogová část ...

Vydal: OEZ s.r.o.

Strana 13 z 32

Vámi hledaný text obsahuje tato stránku dokumentu který není autorem určen k veřejnému šíření.







Poznámky redaktora
3. ProLPLIjemaximálníuvažovanývrcholovýproudblesku200kA. Předimenzováním ochrany prakticky vždy snížíme pravděpodobnost vzniku škod při úderu blesku minimum. Podle výpočtu není třeba hromosvod zřizovat, ale vyplatí riskovat? Podobné přepěťovými ochranami.6. Přepěťové ochrany na bázi jiskřiště mají navíc výhodu, aktivní prvek výkonové TEORETICKÁ ČÁST Minia 11 Přepěťové ochrany > m T2 T3 min . Řešení: a) bez přepěťových ochran Chceme vypočítat riziko ztrát lidských životů. Například pro oblast Krkonoš počet úderů blesku do země km2 / rok. ZÁSADY PŘI INSTALACI PŘEPĚŤOVÝCH OCHRAN 4. Pouze blesků vyšší než tato hodnota tedy pravděpodobnost, že úder blesku způsobí poruchu vnitřních systémů 100x nižší než u nechráněné instalace. velikosti vrcholového proudu blesku, který ochranu dimenzujeme (viz tabulka straně  5). dosazení Proziku celkové riziko snížilo na hodnotu 0,17 10-5 . Podle metodiky výpočtu uvedené normě vychází celkové riziko nižší než přípustné při absenci hromosvodu (LPS), který většinou instalován hlavně proto, aby zachránit objekt před přímým úderem blesku následným požárem. 4. Výsledné riziko ztráty lidských životů spočítané programem Prozik 2,4 10-5 .3. Pokud ze  stejné případové studie odebereme připojené venkovní telekomunikační vedení (ponecháme pouze nn), vyhoví celkové riziko (0,98 10-5 ) bez instalace přepěťových ochran.4. Instalace třetího stupně ochrany Pokud chráněné zařízení vzdáleno předchozího stupně přepěťové ochrany více než (po kabelu), třeba ochranu opakovat. Přepětí vzniklé spínacími pochody v síti zatěžují zařízení méně než přepětí vzniklé při úderu blesku, ale díky své četnosti jsou stejně nebezpečná. Tento typ rizika musí být rozdíl rizika ztrát veřejných službách, kulturním dědictví ekonomických ztrát vypočítán vždy. Vliv kvality zvolených přepěťových ochran riziko vzniku škody z důvodu úderu blesku Do skupiny Střední ohrožení instalace můžeme zařadit i kancelářskou budovu, která chráněna přepěťovými ochranami LPL (případová studie H. Hodnota přípustného rizika stanovená normou je 10-5 . Jedná se například nemocnice, kde při poruše vnitřních systémů došlo přímo k úmrtí osob, nebo elektrárny, kde při poruše vnitřních systémů mohlo dojít výpadku dodávky energie dokonce k havárii. Instalace přepěťových ochran pro hladinu ochrany před bleskem LPL byla tedy dostatečným opatřením a objekt dostatečně chráněn.2 Kancelářská budova) nebo bytový dům (případová studie H. Logická kontrola výsledků výpočtu Na výsledky výpočtu třeba podívat logicky.jiskřiště schopen svádět bleskové proudy vysokých hodnot opakovaně bez větší újmy.4 Bytový dům). Vliv kvality zvolených přepěťových ochran riziko vzniku škody z důvodu spínacích přepětí Výpočet dle ČSN 62305-2 může potvrdit, není nutné instalovat ochrany před přepětím způsobeným údery blesku. případě použití provedení bázi varistoru, zanechá každý úder nevratné škody jeho polovodičové struktuře bude jej třeba podstatně dříve vyměnit. Pro LPL maximální uvažovaný vrcholový proud blesku 100 kA. Existují aplikace, kterých principu nemůžeme dovolit riskovat dobré přímo zařadit LPL nebo LPL II. Proto mohou být delším časovém horizontu přepěťové ochrany bázi varistoru nakonec paradoxně dražší než přepěťové ochrany bázi jiskřiště. Jak možné? Kvalita ochrany závisí zvolené hladině ochrany před bleskem LPL resp. Pouze blesků jsou vyšší než tato hodnota tedy pravděpodobnost, úder blesku způsobí poruchu vnitřních systémů, více než 30x nižší než u nechráněné instalace. V případě varistorového provedení (12,5 kA) jsme chráněni pouze proti bleskům 100 (97 blesků). Přepětí indukované příliž dlouhém kabelu nedokáže vzdálený druhý stupeň eliminovat, tak zařízení ohroženo. Čím blíže umístěn chráněnému zařízení, tím lepší ochrana je zajištěna.1. b) s přepěťovými ochranami Ke snížení celkového rizika instalujeme vstup každého vedení připojeného stavbě přepěťové ochrany pro hladinu ochrany před bleskem LPL IV. 3. Správná instalace T3 Venkovní zóny zanedbáme předpokládáme, lidé za bouřky nebudou pohybovat vně objektu. Aplikačně zde posouváme skupiny Velké ohrožení instalace. 3. Izokeraunická mapa ČR Výpočtem určíme počet úderů blesku země km2 za rok. Při volbě přístrojů v tomto případě řídíme podle pravidel pro skupinu Malé ohrožení instalace. 3. Ochrana před bleskem není podle výpočtu potřebná, ale při úderu blesku máme téměř stoprocentní jistotu, dojde škodám ztrátám.5. Podle konkrétní lokality určíme počet bouřkových dní například z izokeraunické mapy. Protože vypočtené riziko ztráty lidských životů pro objekt převyšuje přípustné riziko, třeba aplikovat opatření pro jeho snížení. už serozhodnemetytoochranyinstalovatnebone,jetřebasiuvědomit, že ochrana před spínacím přepětím měla být instalována vždy. Jak volit přepěťové ochrany? Instalováním přepěťové ochrany bázi jiskřiště (25 kA) jsme chráněni proti bleskům vrcholové hodnotě proudu 200 (99 % blesků)