Klasifikace vzorů pomocí fuzzy neuronových sítí

| Kategorie: Diplomové, bakalářské práce  | Tento dokument chci!

Práce popisuje základy principu funkčnosti neuronů a vytvoření umělých neuronových sítí. Je zde důkladně popsána struktura a funkce neuronů a ukázán nejpoužívanější algoritmus pro učení neuronů. Základy fuzzy logiky, včetně jejich výhod a nevýhod, jsou rovněž prezentovány. Detailněji je popsán algoritmus zpětného šíření chyb a adaptivní neuro-fuzzy inferenční systém. Tyto techniky poskytují efektivní způsoby učení neuronových sítí.

Vydal: FCC Public s. r. o. Autor: Tamás Ollé

Strana 27 z 67

Vámi hledaný text obsahuje tato stránku dokumentu který není autorem určen k veřejnému šíření.

Jak získat tento dokument?






Poznámky redaktora
The main reason behind the creation intelligent hybrid systems have been these limitations. there complex application with two different sub-problems, then neural network and expert system can be used separately for solving these individual tasks.1 Properties fuzzy systems and neural networks (based [6]) Neural network learning techniques can automate the process design and tune the membership functions and reduce the development time and cost in a large measure. This provides more cost effective solution fuzzy implementation typically less expensive alternative than neural nets for embedded control applications. Fuzzy logic systems are good in decision explanations but the rules they use make those decisions they cannot acquire automatically. short comparison between the operation fuzzy systems and neural networks presented the following table: Skills Fuzzy Systems Neural Nets Knowledge acquisition Inputs Human experts Sample sets Tools Interaction Algorithms Uncertainty Information Quantitive and Qualitive Quantitive Cognition Decision making Perception Reasoning Mechanism Heuristic search Parallel computat.) making them suited for individual problems. Speed Low High Adaptation Fault-tolerance Low Very high Learning Induction Adjusting weights Natural language Implementation Explicit Implicit Flexibility High Low Table 4. Expressing the weights the neural net using fuzzy rules helps provide greater insights into the neural nets, thus leading design of better neural nets [5]. This learned knowledge can used to generate fuzzy logic rules and membership functions, significantly reducing the development time. The behavior fuzzy systems can explained with the help of fuzzy rules and their performance can adjusted tuning the rules. Every intelligent technique has some computational qualities (explanation of decisions, learning ability, etc. To overcome the problem knowledge acquisition, neural networks are extended automatically extract fuzzy rules from numerical data [6].18 behavior based system input-output data. The . However, fuzzy system applications are limited the fields where expert knowledge is available and the number input variables small. With the combination two more techniques, able to overcome the limitations individual techniques. For example, while neural networks are good recognizing patterns, they are not good at explaining how they reach their decisions [6]