V této úvodní kapitole se pokusíme nastínit některé metodologické aspekty stavby fyziky a jejího začlenění do kontextu ostatní přírodovědy a vědeckého poznání vůbec. Tyto metodologické poznámky mohou být zajímavé např. pro studenty a zájemce nefyzikálních profesí, kteří si chtějí udělat ucelený obraz o fyzikálních aspektech zkoumání přírody.
RNDr.6, pasáž
"Kapalné scintilátory"). plexiskla), němž prolétající nabité částice vzbuzují Čerenkovovo
záření, které dopadá fotokatodu fotonásobiče, kde převáděno elektrické impulsy podobně
jako tomu detektorů scintilačních.2. Zesílené impulsy vedou analogově-digitální konvertor odtud do
http://astronuklfyzika.
Vnikne-li aktivní vrstvy detektoru (je "ochuzená" vrstva objemová oblast bez volných
nosičů náboje) kvantum ionizujícího záření, ionizační energie způsobí polovodiči přeskok
úměrného množství elektronů vodivého pásma vznik elektron-děrových párů.htm (34 54) [15. Používá různých velikostí tvarů dielektrika, detekční
prostředím bývá někdy kapalina (třebas voda) nebo vzduch, pro soustředění Čerenkovova záření
na fotokatodu jednoho více fotonásobičů jsou někdy používány čočkové zrcadlové optické
soustavy. Polovodičové detektory
Mechanismem přímého elektrického využití ionizačních účinků záření polovodičový detektor
svým principem poněkud podobá ionizační komoře, přičemž ovšem citlivým médiem není plyn,
ale vhodný polovodičový materiál.1), takže klidovém stavu obvodem neprotéká elektrický proud. Schéma polovodičového detektoru.
Čerenkovovy detektory mají své hlavní využití pro detekci částic vysokých energií používají se
u velkých urychlovačů při detekci kosmického záření (viz též pasáž "Neutrina" §1. Amplituda (resp.2.10. Poněvadž počet emitovaných fotonů úhel směru jejich emise vzhledem směru
pohybu primární částice závisí její energii (nadsvětelné rychlosti), lze toho určit energii
detekované nabité částice směr jejího pohybu. Problematika zde poněkud podobná jako u
detekce nízkoenergetického β-záření tritia kapalných scintilátorech (viz níže §2. Jsou proto
kladeny vysoké nároky vlastnosti fotonásobičů vysoká kvantová účinnost fotokatody pro
spektrální obor Čerenkovova záření, nízký šum, dobrý optický kontakt fotonásobiče prostředím, dále
též nízká absorbce záření prostředí.1.
Při detekci Čerenkovova záření naráží problém malého počtu vznikajících fotonů.5. elektronického hlediska polovodičový detektor podstatě
dioda zapojená elektrickém obvodu vysokým napětím (cca 1000-2000 přes velký ohmický odpor
v závěrném (nevodivém) směru (obr. Tyto elektrony se
v elektrickém poli okamžitě začnou pohybovat kladné elektrodě díry záporné) -
elektrickým obvodem projde krátký proudový impuls, pracovním odporu vznikne napěťový úbytek
a přes kondenzátor elektrický impuls vede předzesilovači.6). Podle
vztahů uvedených pasáži "Čerenkovovo záření" vodě vzniká cca 200 fotonů centimetr
dráhy ultrarelativistického elektronu, méně optimálních podmínek méně. Vojtěch Ullmann: Detekce aplikace ionizujícího záření
vysokým indexem lomu (např.2 "Radioaktivita"
nebo "Kosmické záření §1.
Obr. Vpravo ukázka srovnámí polovodičového spektra záření gama se
spektrem scintilačním.5. časový integrál)
impulsu výstupu zesilovače přímo úměrná celkovému sebranému náboji, tedy
energii detekovaného záření (přesněji řečeno energii, která absorbovala při průchodu kvanta
záření aktivní vrstvou detektoru).
2.2008 12:15:06]
.cz/DetekceSpektrometrie. Amplitudovou analýzou výstupních impulsů můžeme tedy
provádět spektrometrickou analýzu energie detekovaného záření, podobně jako u
scintilačních detektorů.5