V této úvodní kapitole se pokusíme nastínit některé metodologické aspekty stavby fyziky a jejího začlenění do kontextu ostatní přírodovědy a vědeckého poznání vůbec. Tyto metodologické poznámky mohou být zajímavé např. pro studenty a zájemce nefyzikálních profesí, kteří si chtějí udělat ucelený obraz o fyzikálních aspektech zkoumání přírody.
c2 1,022MeV, mohou při reakci vznikat nové
(sekundární) částice dvojice elektron pozitron e+.
Pod interakcí částic vysokých energií rozumí reakce vyvolané částicemi energií, která leží
nad prahem produkce mezonů neboli nad energií ≈140MeV těžišťové soustavě.2008 12:13:46]
. protony) ostřelována atomová jádra, dochází vyrážení
několika nukleonů "odštěpků" "tříštění" fragmentaci jader.3 1.
Účinný průřez interakce velmi těsně souvisí koeficientem absorbce, tzv.1/[(E-Er)2 (Γ/2)2] ,
kde rezonanční energie, představuje šířku excitované hladiny intermediálního stavu při interakci, faktor je
funkcí poměru spinů výchozího konečného stavu. Tato souvislost bude vyjasněna následujícím
§1. impaktní parametr geometrická vzdálenost
středů efektivních "disků" interagujících částic, níž kolem sebe prolétají nebo protínají.1936
odvozen důležitý Breit-Wignerův vztah *)
σ (λ2/4π). stoupající energií
se při takových interakcích může produkovat postupně více nových sekundárních částic (většinou
π-mezonů) dále též částice vyšší klidovou hmotností mezony nukleony antinukleony, hyperony. jen fotony
odnášející energii při deexcitaci vzbuzených stavů.5 Elementární částice
různé interakce, jejichž různé pravděpodobnosti popíšeme různými účinnými průřezy.
Přítomnost rezonančních maxim energetické závislosti účinného průřezu svědčí pro existenci určitých
dynamických procesů při interakci vznik vázaných systémů, diskrétních excitovaných stavů intermediálních částic.
Jsou-li částicemi vysokých energií (např.me.
Energetická závislost účinného průřezu často rezonanční charakter: měníme-li spojitě energii interagující
částice, objevují křivce závislosti účinného průřezu výrazná maxima kolem určitých konkrétních hodnot
energie. Při nízkých energiích (menších než cca 1MeV)
se celkový počet elementárních částic před interakci nemění, vznikají příp.6 "Ionizující záření", pasáž "Absorbce záření látkách".
Pro průběh konkrétní interakce důležitý tzv. laboratorní (terčíkové) soustavě vzniká úzký
svazek sekundárních částic, předenším pionů kolimovaných dopředu směru pohybu primární
http://astronuklfyzika.10. lineárním součinitelem zeslabení µ,
v exponenciálním zákoně absorbce ionizujícího záření látkách.cz/JadRadFyzika5.6 jsou rozebírány interakce především při nižších středních energiích, které vedou
k charakteristickým jevům excitace ionizace atomů, popř.g.RNDr. Tyto
účinné průřezy nemají již nic společného geometrickými rozměry částic jsou důsledkem
vnitřních mechanismů konkrétních druhů interakcí. 1. Tyto závislosti svým tvarem připomínají rezonanční křivky závislost proudu, napětí impedance u
elektrických obvodů RLC (obsahujících ohmický odpor indukčnost kapacitu C), frekvenci střídavého
elektrického signálu kolem frekvence frez= 1/[2π√(LC)]. větší než součet efektivních
poloměrů obou částic (terčové nalétající), nedochází již přímé interakci základním
mechanismem (silnou krátkodosahovou interakcí), ale částice mohou interagovat prostřednitvím
svých elektrických polí, pokud jsou nabité (taková srážka někdy nazývá ultraperiferní).
Závislost účinného průřezu energii
Při daném druhu částic interakcí účinný průřez poměrně složitou funkcí energie nalétající částice.
*) Breit Wigner odvodili tento vztah pro speciální případ elastického rozptylu nalétající částice potenciálovém poli
částice terčíkové. Pro účinný průřez tohoto druhu interakcí byl již r. Pokud impaktní parametr větší než rgeom, resp.
Interakce částic vysokých energií
V §1. V
případě malého impaktního parametru b<<rgeom jedná centrální srážku, při větších hodnotách b
o srážku periferní. Vojtěch Ullmann: Jaderná radiační fyzika. jaderným reakcím spojeným s
transmutací atomových jader emisí jaderných částic.
Při nejvyšších energiích (řádově 100GeV vyšších) jsou interakce již značně složité různorodé, dochází
k produkci velkého počtu sekundárních částic.
Jednotkou účinného průřezu soustavě byl m2, který však neadekvátně velký proto v
jaderné fyzice používá jednotka barn (bn): 10-28m2, která řádově velikost
geometrického průřezu protonu vzhledem silné interakci.htm (10 43) [15. určitými modifikacemi však tento vzorec platí pro všechny druhy interakcí vykazující rezonanční maxima
účinného průřezu.Γ2. Pokud energie interagujících částic (včetně
fotonů gama) překročí prahovou hodnotu 2