Předložený studijní materiál slouží jako základní studijní materiál distanční formy
studia předmětu Elektrotechnika 2, který navazuje na předmět Elektrotechnika 1 a spolu s ním
vytváří nezbytně nutné teoretické základy společné pro všechny elektrotechnické obory, které
jsou potřebné pro studium předmětů specializací v dalších ročnících studia.
Autor: Doc. Ing. Jiří Sedláček, CSc. Prof. Ing. Juraj Valsa, CSc.
Strana 80 z 186
Vámi hledaný text obsahuje tato stránku dokumentu který není autorem určen k veřejnému šíření.
,, 21
, píšeme příslušnou
část řešení tvaru
.
Poznamenejme ještě, kořeny charakteristické rovnice skutečných lineárních obvodů
složených prvků kladnými hodnotami parametrů mají vždy zápornou reálnou část. obvody náhradními,
modelujícími zjednodušeným způsobem nějakou složitější situaci.3-6)
Řešení homogenní rovnice již celkovým řešením případě, y(t)=0. (5. (5..2 Obvody řádu
Obvody řádu jsou obvody, popsané diferenciální rovnicí řádu.
To nám umožňuje alespoň jednodušších případech vypočítat partikulární řešení metodami,
které jsme již dříve poznali souvislosti řešením rezistorových obvodů resp.
ωαλ j±=2,1 .
. Jako příklad takového
náhradního obvodu tvaru sériového spojení rezistoru induktoru můžeme uvést schéma
respektující vedle indukčnosti vinutí elektrického stroje také odpor vodiče, něhož vinutí
realizováno. Má-li některý kořenů násobnost m
nKKK .
To znamená, reálné kořeny jsou záporné 0<kλ komplexně sdružených kořenů je
0<α Řešení homogenní rovnice proto těchto obvodů vždy splňuje podmínku)(0 tx
0)(lim =
∞→
tx
t
.
Na řadě příkladů obvody řádu ukážeme metodiku řešení typických situací.5.Fakulta elektrotechniky komunikačních technologií VUT Brně
, (5. Patří nim sériové a
paralelní obvody RC, nakreslené obr. Jiným příkladem může být paralelní obvod RC, kterém prvek respektuje
nedokonalosti dielektrika kondenzátoru.3-5)∑=
−
m
k
k
k
t
tKe k
1
1λ
Komplexní kořeny vyskytují vždy dvojicích jako komplexně sdružené, např. určíme opět počátečních podmínek. takovými obvody praxi často
setkáváme buďto jako skutečnými obvody anebo jako tzv. Většina
závěrů, kterým dojdeme, bude pak použitelná pro obvody složitější.
Takové dvojici pak přísluší část řešení, kterou můžeme psát některém následujících tvarů
.3.
)(0 tx
Působí-li obvodu zdroje stejnosměrného nebo periodického napětí proudu, dosáhne
obvod odeznění přechodného děje stacionárního nebo periodického ustáleného
stavu.3-1) tedy ustálený stav vyjádřen právě partikulárním řešením . Děj ve
stabilním obvodu pak přechodný charakter uplynutí dostatečně dlouhé doby zanikne. Vzhledem (5.3-4)∑=
=
n
k
t
k
k
eKtx
1
0 λ
kde jsou integrační konstanty, jejichž konkrétní hodnoty vypočítáme z
počátečních podmínek soustavě. setrvačných
obvodů harmonickým napájením.)sin()cossin(21
21 ϕωωω ααλλ
+=+=+ tDetBtAeeKeK tttt
Konstanty resp.3-1..
)(0 tx
)(txp
5