Hodnoty prvků obvod: Ω=Ω=Ω=Ω== 20,99,101,100 54231 RRRRR U=10V.25a,
dostáváme maticovou rovnici
⎥
⎥
⎥
⎦
⎤
⎢
⎢
⎢
⎣
⎡
=
⎥
⎥
⎥
⎦
⎤
⎢
⎢
⎢
⎣
⎡
⋅
⎥
⎥
⎥
⎦
⎤
⎢
⎢
⎢
⎣
⎡
++−−
−++−
−−+
0
0
0
3
2
1
54252
55311
2121 U
I
I
I
RRRRR
RRRRR
RRRR
s
s
s
.
Příklad 3. Zajímáme se
o proud diagonálou můstku.Elektrotechnika 1
Podle výše popsaných pravidel můžeme sestavit soustavu rovnic přímo maticovém tvaru
⎥
⎥
⎥
⎦
⎤
⎢
⎢
⎢
⎣
⎡
−
=
⎥
⎥
⎥
⎦
⎤
⎢
⎢
⎢
⎣
⎡
⋅
⎥
⎥
⎥
⎦
⎤
⎢
⎢
⎢
⎣
⎡
+−
−++−
−+
2
1
3
2
1
525
55433
331
0
0
0
z
z
s
s
s
U
U
I
I
I
RRR
RRRRR
RRR
.
Po výpočtu smyčkových proudů některou známých metod (Cramerovým pravidlem,
pomocí inverzní matice, Gaussovou eliminací, můžeme psát rovnice pro proudy větvové
jako superpozice proudů smyčkových:
11 sII sII 213 III sII 325 III .
a) b)
Is1
Is2
Is3
Is1
Is3
Is2
.
Obr. při užití Cramerova pravidla musíme vypočítat čtyři determinanty třetího řádu.14, které bylo řešeno metodou transfigurace. Máme-li
ovšem dispozici prostředek rychlému výpočtu inverzní matice, dostaneme vektor všech
smyčkových proudů jednom výpočetním kroku jako
z
-1
s URI 3.25: Můstkové zapojení metodě smyčkových proudů
Obvod větví nezávislé uzly, tj. 3.
při užití Cramerova pravidla determinanty třetího řádu. Volíme-li nejdříve jako jednoduché podle Obr.17:
Uvažujme můstkové zapojení podle Příklad 3.23a. 3.
Např. 3.38 )
kde jsme označili -1
R matici inverzní odporové matici soustavy .22. 3. Uvedené volbě systému nezávislých
smyček odpovídá strom podle Obr.
Protože proud diagonálou roven 235 III třeba počítat dva smyčkové proudy, např. nezávislé smyčky, jak znázorněno v
grafu obvodu Obr