jeho jistá elektrická vodivost, dává vzniknout proudovému poli
mezi elektrodami kondenzátoru.
Statická kapacita definována jako
u
uq
uCs
)(
)( 2.
Typickým představitelem nelineárního kapacitoru např.
Nedokonalost dielektrika, tj.18 )
odkud plyne vzájemný vztah mezi dynamickou statickou kapacitou
du
udC
uuCuC s
sd
)(
)()( 2.19 )
Z poslední rovnice také ihned vyplývá rovnost mezi statickou dynamickou kapacitou, jedná-
li kapacitor lineární.16 )
Budeme-li nyní uvažovat dynamickou kapacitu, můžeme pro proud kapacitorem psát
dt
tdu
uC
dt
tdu
du
udq
dt
tdq
ti d
)(
)(
)()()(
)( === 2. 2.17 )
kde jsme dosadili vztahu 2. 2.13. se
kromě nelinearity vyznačují hysterezí, jejímž důsledkem nejednoznačnost charakteristik. Tato skutečnost označuje jako svod modelu
kondenzátoru vyjádřit přidáním rezistoru dle Obr. Pak totiž není funkcí napětí derivace nulová.Elektrotechnika 33
U nelineárního kapacitoru uvažujeme statickou dynamickou kapacitu, které jsou závislé
na poloze pracovního bodu, podobně jako tomu bylo nelineárního rezistoru odporem a
vodivostí.
Kromě své dominantní vlastnosti kapacity vykazuje další nežádoucí vlastnosti. feroelektrických látek.15 )
dynamická pak
du
udq
uCd
)(
)( 2.
Cd
0 u
.
Obr.16 Můžeme ale také psát, při uvážení 2.12: Závislost dynamické kapacity varicapu napětí
Skutečný obvodový prvek, kterým kapacitor realizován, nazývá kondenzátor.15 rovnici
dt
tdu
du
udC
uuCuuC
dt
d
dt
tdq
ti s
ss
)()(
)(])([
)(
)( ⎥
⎦
⎤
⎢
⎣
⎡
+=== 2. varicap, což principu PN
přechod, jehož kapacita řízena stejnosměrným napětím, viz Obr. 2. Zvláštní skupinu
pak tvoří modely kondenzátorů, které mají dielektrika tzv.12