12: Závislost dynamické kapacity varicapu napětí
Skutečný obvodový prvek, kterým kapacitor realizován, nazývá kondenzátor. varicap, což principu PN
přechod, jehož kapacita řízena stejnosměrným napětím, viz Obr.16 Můžeme ale také psát, při uvážení 2.16 )
Budeme-li nyní uvažovat dynamickou kapacitu, můžeme pro proud kapacitorem psát
dt
tdu
uC
dt
tdu
du
udq
dt
tdq
ti d
)(
)(
)()()(
)( === 2.13.
Nedokonalost dielektrika, tj.15 rovnici
dt
tdu
du
udC
uuCuuC
dt
d
dt
tdq
ti s
ss
)()(
)(])([
)(
)( ⎥
⎦
⎤
⎢
⎣
⎡
+=== 2. 2. feroelektrických látek. Zvláštní skupinu
pak tvoří modely kondenzátorů, které mají dielektrika tzv.
Typickým představitelem nelineárního kapacitoru např. Tato skutečnost označuje jako svod modelu
kondenzátoru vyjádřit přidáním rezistoru dle Obr.18 )
odkud plyne vzájemný vztah mezi dynamickou statickou kapacitou
du
udC
uuCuC s
sd
)(
)()( 2. Pak totiž není funkcí napětí derivace nulová.19 )
Z poslední rovnice také ihned vyplývá rovnost mezi statickou dynamickou kapacitou, jedná-
li kapacitor lineární. 2.
Statická kapacita definována jako
u
uq
uCs
)(
)( 2.15 )
dynamická pak
du
udq
uCd
)(
)( 2.
Kromě své dominantní vlastnosti kapacity vykazuje další nežádoucí vlastnosti.
Cd
0 u
.17 )
kde jsme dosadili vztahu 2.Elektrotechnika 33
U nelineárního kapacitoru uvažujeme statickou dynamickou kapacitu, které jsou závislé
na poloze pracovního bodu, podobně jako tomu bylo nelineárního rezistoru odporem a
vodivostí. 2.
Obr. jeho jistá elektrická vodivost, dává vzniknout proudovému poli
mezi elektrodami kondenzátoru.12. se
kromě nelinearity vyznačují hysterezí, jejímž důsledkem nejednoznačnost charakteristik