Cílem předmětu je seznámení se základními pojmy teorie elektromagnetického pole. Po prostudování modulu by měl student být schopen orientovat se v základní terminologii elektrotechniky, řešit elementární úlohy z elektro/magnetostatického pole, stacionárního a kvazistacionárního pole a měl by znát základní principy šíření elektromagnetických vln.
38)
. Vzhledem tomu, výsledek představuje hustotu výkonu šířené vlny,
můţe nabývat jen kladných hodnot. potom
1
kt
x
vkxt (5.37) z
jkx
e
E
uH
v
0
Z
(5. nuly nebo maxima intenzit) pohybují směru rychlostí, kterou
nazýváme fázová rychlost.sin2 konstkxtE resp. tam, kde . Místa stejnou fází jsou taková místa, kde amplituda
.33)
Vzdálenost těchto míst stejnou fází označíme jako délku vlny Úhlová délka jedné vlny
sinusového průběhu 2, fáze vlny šířící prostředí vlnovou konstantou souřadnici kx,
na souřadnici je k(x Platí tedy
2 kxxk
f
v
ffk
f
1
2
2222
(5.36)
Střední hodnota Poyntingova vektoru rovna reálné části fázoru Poyntingova vektoru.34)
Ve vakuu nebo vzduchu dostáváme známý vztah
f
c
Pokusme nalézt ještě velikost třetího vektoru, který doplňuje intenzity polí ortogonální systém
REM vlny Poyntingův vektor
x
v
zy
v
kxt
Z
E
kxt
Z
E
kxtE uuuEN 2
2
00
0 sin
2
sin2sin2H
x
vv
kxt
Z
E
Z
E
u
2cos
2
0
2
0
(5.sin konstkxt dále . .35)
Výsledný vztah potvrzuje, Poyntingův vektor směr šíření vlny Funkce cos můţe nabývat
hodnot rozmezí +1, tedy zřejmé, první člen závorce představuje střední hodnotu
Poyntingova vektoru, níţ superponován kosinový průběh, kmitající dvojnásobnou frekvenci,
neţ frekvence šířící vlny.sin2 0
konstkxt
Z
E
z
v
tzn. symbolického tvaru uvaţovaných tří vektorů platí:
x
v
zy
xkj
v
xkj
Z
E
e
Z
E
eE uuuHEN
2
00
0
(5.konstkxt např.Základy šíření vln elektromagnetická kompatibilita
162
Rovinná vlna postupující směru osy oba vektory intenzit fázi místa stejnou fázi
jednotlivých vektorů (např.
Zpětná vlna
Řešení kladným argumentem přísluší zpětné vlně tvar:
y
jkx
eE
(5