Vyzařování a šíření elektromagnetických vln je oblastí, se kterou se denně setkáváme aniž bychom si to přímo uvědomovali. Elektromagnetické vlny se šíří prostorem, různé druhyvedení je nutí šířit se podle přání uživatele a také při tom i sloužit. Je proto velmi užitečné znát podmínky pro jejich využívání, především v technické praxi. Vždyť přechod na stále vyšší kmitočty nás nutí respektovat vlnovou povahu jevů i v situací, které byly doménou obvodů. Dnes již nikoho nepřekvapí, že úsek vedení mezi dvěma součástkami v počítači je spíše vedením než jen vodivým spojem.
1 . Základem rozšíření dosud
získaných poznatků tedy bude zkoumání vlivu zdrojové složky proudové hustoty Jzdroj která
je příčinou vyzařování elektromagnetických vln. Matematicky půjde řešení nehomogenní soustavy
Maxwellových rovnic, tedy zahrnujících zdrojovou složku Jzdroj pravé straně rovnice
700H699H(3.1 Řešení nehomogenní vlnové rovnice
Při řešení Maxwellových rovnic 699H698H4. 9. Kirchhoffem. jakém pásmu kmitočtů vlnovod příčných rozměrech 34,4 14,6 mm
nepropouští elektromagnetické vlny ?
2. kapitole jsme omezili situace, kdy se
nesleduje vlastní proces vzniku elektromagnetických vln. Nyní tyto poznatky doplníme.R. Proces vyzařování elektromagnetických vln budeme zkoumat této kapitole.Fakulta elektrotechniky komunikačních technologií VUT Brně
8.
4.3)
kde k2
= ω2
ε. Jak velkou fázovou skupinovou rychlost bude mít tomto vlnovodu vlna
o kmitočtu GHz. Stanovte pásmo jednovidovosti vlnovodu podle příkladu 1. První dvě rovnice pak mají tvar
EJH εωjrot (9.1)
HE μωjrot (9.2)
Intenzity pole jsou tedy vyvolány (známou) proudovou hustotou .
1. Naším úkolem bude zjistit, jaké intenzity pole tento proud
vytvoří okolním prostoru.6 Kontrolní otázky příklady (697H696HKapitola 8)
9 Vyzařování elektromagnetických vln
V dosavadním výkladu jsme zabývali pouze šířením vln nezajímali jsme jejich
vznik. Zavedením vektorového potenciálu získá nehomogenní vlnová
rovnice
JAA μ−=+∇ 22
k (9. jakého kmitočtu možno tomto vlnovodu vybudit elektromagnetické pole
s intenzitou elektrického pole rovnoběžnou delší hranou ?
3.14).μ Řešení vlnové rovnice omezíme část prostoru ohraničeného plochou
S jak patrné 701H700HObr. kapitole.
9. Tím
bude vytvořen teoretický základ pro studium antén pro prakticky zaměřený výklad
o anténách 698H697H10.
Ze známých postupů řešení této soustavy rovnic všimneme postupu vypracovaného
G.
Zdrojem elektromagnetických vln střídavý (vysokofrekvenční) proud, tekoucí
v prostoru (na vysílací anténě)