Kniha podáva názorný výklad principů činnosti a vlastností základních druhů nejpoužívanějších polovodičových součástek, tzn. diody, tranzistoru a tyristoru. Výklad nepředpokládá předběžné znalosti v oboru polovodičové techniky. Kniha je určená širokému okruhu zájemců o polovodičovou techniku.
Jak můžeme omezit efektivní hodnotu střídavé složky výstupního
napětí usměrňovače?
Připojením: -
a) nulové diody,
b) kondenzátoru,
c) zatěžovacího odporu.
c) Čtyři. KAPITOLY
1.
c) Abychom omezili hodnotu opakovatelného špičkového proudu.
b) Dvě. 83b) Teplotní kompenzace Zenerovy diody
Kontrolní otázka: Úbytek napětí propustném směru běžné diody
zmenšuje raV při vzrůstu teploty 1°C.aby mělo výstupní napětí přibližně hodnotu protože diody, jejichž
závěrné napětí tuto hodnotu, nejsou téměř teplotně závislé. Proč musíme zapojit přívodů usměrňovače odpor, jestliže
použijeme vyhlazovací kondenzátor výstupu usměrňovače ?
a) Abychom omezili vliv komutačních přepětí diod. Kompenzace provede jednoduše sériovým zapojením Zenerovy
diody obyčejné diody podle obr. 63a) Dvoustupňový stabilizátor napětí
Obr. teplotní
kompenzaci takových stabilizačních diod (Zenerových diod) používáme
s výhodou běžné diody, jejíž úbytek propustném směru rostoucí teplotou
klesá.
b) Abychom zmenšili zapínací proud.
2. katalogovém listu Zenerovy
diody nalezneme údaj: Zenerovo napětí teplotní činitel 0,6 na
1 °C.
3.
2íV,
5'V2
o )
Obr. Kolik křemíkových diod musíme zapojit série suvedenou Zenerovou
diodou, aby hodnota výstupního napětí ř72 nezávisela teplotě?
ZÁVĚREČNÝ TEST IV.
81
. 63b. Kolik diod musíme použít jednofázového můstku ?
a) Jednu. Použijeme-li
diod větším závěrným napětím, musíme počítat tím, jejich závěrné
napětí (Zenerovo napětí) rostoucí teplotou okolí zvyšuje