Kniha podáva názorný výklad principů činnosti a vlastností základních druhů nejpoužívanějších polovodičových součástek, tzn. diody, tranzistoru a tyristoru. Výklad nepředpokládá předběžné znalosti v oboru polovodičové techniky. Kniha je určená širokému okruhu zájemců o polovodičovou techniku.
3. Průběh napětí usměrňovače, zatíženého odporem kapacitou,
udává obr.
8. Dosáhne-li dioda vyšší teploty, než připouští údaj výrobce
v katalogovém listu, hrozí nebezpečí tepelné nestability.
5.
Kapitola IV
Kontrolní otázky:
1.
g) Tunelová dioda.
4.
d) Tunelový usměrňovač. Protože křemíkové diody mají menší závěrný proud než germa
niové, lze nich připustit vyšší teplotu přechodu.
7. (Poznámka: praktických aplikacích střední hodnota zvýší dva
krát třikrát. Křemíková dioda vyšší prahové napětí než germaniová. 51b.
4. Ano, jestliže odebíráme menší proud (200 srovnání pů
vodní hodnotou 400 mA), vzroste střední hodnota výstupního napětí usměr
ňovače obvodu, uvedeném obr, 52, zhruba hodnotu 290 V). Diferenciální odpor diody větší plochou přechodu menší. Vlivu vypínací doby jjis účinnost usměrnění nemu
síme obávat: polovina periody průběhu napětí kmitočtu 500 trvá
0,5 1/500 0,001 1000 jxs, takže vypínací doba uvažované diody je
stokrát kratší.Závěrečný test kapitoly III
1. Následující diody liší pouze stupněm dotace oblastí N:
a) Lavinová dioda.)
6.
9. Ano, průběh výsledné křivky íti{u) změní, charakteristika bude
plošší.
5. Ztráty křemíkové diody, pracující proudem činí
zhruba W. Maximální hodnota usměrněného napětí 220 |/2 310 V. Průběh usměrněného proudu skládá 400 impulsů dobu
jedné vteřiny.
7. Komutace diod ohrožuje diody zvláště tehdy, jestliže obvod
obsahuje indukčnosti.
2.
3.
6.
2. Křemíková dioda menší závěrný proud než germaniová. Připojením vyhlazovacího kondenzátoru zvýšíme značně střední
hodnotu výstupního napětí jednopulsního usměrňovače, zatíženého odpo
rem. Střídavá složka výstupního napětí představuje nesinusový průběh.
h) Zenerova dioda.
275