CO JE ALGEBRA? K čemu jsem se s ní mořil? Tyto otázky si jistě položila většina těch, kteří prošli školou druhého stupně. Pokusíme se na tyto otázky stručně odpovědět a objasnit je. Nejdříve si řekněme, že algebra, kterou máme na mysli, je pouze název složky vyučovacího předmětu, zvaného matematika. Matematika pojednává o kvantitativních vztazích reálného světa; dělí se na dvě složky: a) aritmetiku, algebru a analysu, které pojednávají o ...
Relativními čísly rozumíme nulu kladná nebo záporná
čísla. Jsou odmocniny některých čísel.
RELATIVNÍ ČÍSLA.
Možná, již leckdo položil někdy otázku: třeba uží
vat praxi záporných čísel? Místo přímé odpovědi tuto
otázku pokusme zodpovědět několik zcela nevinných otá
zek praxe:
26
.
Záporná čísla nutno vždy označovat; píšeme před pří
vlastkové znaménko Tedy atp.
Termín „relativní čísla“ zavedl německý matematik Otto
Stolz. Píší bez znaménka (36; 0,345; |-). ]/2; ]/4; ]/|; číslo 7t, číslo Jsou čísla
irracionální.
Existují však také čísla, která nelze vyjádřit ani jako čísla
celá, ani jako čísla periodická, ani jako desetinné zlomky
o konečném počtu míst.
_ 3_
Na př. Není kladná ani záporná. Tento termín vědecké literatuře neujal užívá se
ho téměř výhradně škole.
Přívlastková znaménka pro čísla kladná, —-pro čísla
záporná) mají týž tvar jako výkonná znaménka Pro sčí
tání pro odčítání. Nula zvláštní postavení.
Každé jiné číslo může být buď kladné, nebo záporné. Pokud je
však nutno označovat, píšeme před é
znaménko Tedy: -|-4 a;-| --| .Y. Naproti tomu nazýváme výše uvedená čísla
čísly racionálními.
S kladnými čísly oboru racionálních čísel) počítá
v aritmetice