Abychom mohli fysikální veličiny měřit, musila se ustáno viti pro každou její určitá velikost za jednotku. Všechny přírodní úkazy jsou závislé na prostoru, hmotě a času. Proto všechny fysikální veličiny dělíme na veličiny základní, kterými jsou prostor, hmota a čas, a na veličiny odvozené, mezi něž patří všechny ostatní. Jednotka každé veličiny by mohla být ...
&r2
u< Uo
U
3. 3. Dvě kovové desky jsou odděleny dvěma sil
nými vrstvami isolantů dielektr. Jak namáháno silné dielektrikum kondensátoru, když zapojen
na napětí 3000 voltů?
Řešení:
U
d
E =
3000
0,2
= 000 V/cm.)
Řešení:
1. pole, při níž nastává průboj dielektrika udává se
jako jeho elektrická pevnost.
Zvětšuje-li rovnoměrně napětí kondensátoru, zvětšuje se
rovnoměrně dielektr. Jak velká byla
jeho elektrická pevnost?
Rešelií: f
U _
d 0,3
E
9 5
_ 83,3 kV/cm. Dielektrikum tloušťky probilo při napětí kV.
d d
čr.
Měří V/cm nebo kV/cm. -—i- ——= odtud U£
.30
Při otáčkách sek. namáhání isolantů, spojíme-li
desky zdrojem napětí 5000 voltů? (Obr.
Při určitém stupni dielektrické indukce nastane již tak velká de
formace atomu, elektrony přejdou jednoho atomu druhého
jako vodiči nastane průboj dielektrika.
12. Elektrická pevnost dielektrika.
Intensita elst. náboj
Q =
CU
20 =
3 •104 •10~12 10*
150 150
Takže elektrika mohla dodávat proud
J 1,2 •10-4 A.
Je-li dieletrikum složeno dvou stejně silných isolantů, rozdělí
se celkové namáhání obě vrstvy obráceném poměru jejich dielek-
trických konstant.
20 1,2 10-* G.
Příklady:
1. konstantách sTl= 3,
fc>2= Jak velké el. =
_ 6
U2 Srí 3
dosadíme dostaneme
2 C/2 5000
3 5000
5000
2. indukce D. vzniká el.
2