Kniha je úvodem do metod praktického modelování, analýzy, návrhu a optimalizace elektrotechnických zařízeni na číslicovém počítači. Výklad je doprovázen jednoduchými názornými příklady řešených úloh z různých odvětví elektrotechniky.Kniha je určena inženýrům a technikům, kteří se zabývají moderním návrhem elektrotechnických zařízení.
Matici, jejíž determinant vyjádřen (5. Odtud patrné, že
RiÁP) det(p (5. 100 popsaného
stavovými rovnicemi (5.
Je-li °DÍÍ různé nuly, polynom i?lx(p) čitateli přenosové funkce
/•'[ ,(p) UjJ můžeme vyjádřit jako
R ÁP) ,2)
283
.10).172)
kde °D* nesingulární diagonální matice.170)
kde j-tý sloupec matice C;je ť-tý řádek matice °Dij prvek pozici (i, j)
matice °D(p).9) (5. Potom ci; det °D*.171)
Pokud °Dij nuly přenosové funkce Fijp) můžeme tedy počítat jako
charakteristická čísla matice B^/°Z)y, přičemž konstantní činitel =
= °Dij. Podle (5.171) můžeme napřed redukovat pomocí
elementárních maticových operací tak, abychom dostali
R u(p) det
p A,, 0
-C* °D*.170), můžeme Gaussovou eliminací
převést součin horní dolní trojúhelníkové matice
~S(p) BjCil°Dij 0S(p) Bj
_ °DiJ- °D;j_ ,
kde S(p) —A.160) polynom Q(p) jmenovateli všech
přenosových funkcí bude
Q(p) Pi)
kde póly p2, které jsou charakteristickými čísly matice
_ /c
' ■(R R,) L
jsou opět shodné (5.
Příklad
Naznačeným postupem odvodíme přenosové funkce obvodu obr.26).IJ-
— det °D^.
Na základě pravidel pro rozvoj determinantu vidíme, (5.Podle Cramerova pravidla odtud pro přenosovou funkci YjVj y(p)/<2(p)
vyplývá, že
p O
8(p) det
i?Jp) det
p í
C
1
A B;
= det —A) (5.26). Pokud °Di; matici výrazu (5.169)
(5. det ,() (5. Obdobně mů
žeme počítat obrazy odezev počáteční stav.169) shoduje
s (5