Kniha je úvodem do metod praktického modelování, analýzy, návrhu a optimalizace elektrotechnických zařízeni na číslicovém počítači. Výklad je doprovázen jednoduchými názornými příklady řešených úloh z různých odvětví elektrotechniky.Kniha je určena inženýrům a technikům, kteří se zabývají moderním návrhem elektrotechnických zařízení.
.9 1
1.(x ,0)) .3.) bodě <0), dostaneme
f(x) f(x<0)) f(x <0)). Metoda Newtonova-Raphsonova
V současných programech řešení soustav nelineárních algebraických rovnic
používá převážně metoda Newtonova-Raphsonova nebo některé její modifikace.512’ ---
Poslední iterace přesného řešení dané soustavy liší již méně než 1%.
Použijeme-li pro tentýž příklad Gaussovu-Seidelovu metodu, prvním
kroku dostaneme
1 4
1
rU) 2
x™ -------
\ 2
- 2
5
2
19
neboli (1) 12.
Aplikujeme-li Taylorův rozvoj vektorovou funkci f(.
Další iterace byly ještě přesnější.2.
Tato metoda, nazývaná též metoda tečen, založena postupné linearizaci sou
stavy f(x) tak, jak odpovídá prvním dvěma členům Taylorova rozvoje.) bodě (0)
173
.. Obdobně dostaneme dále
x =
|~15 5“lt
L j
x (3) 3~jt
l_8’ J
y(4-) |"1 t
L J
„ 51.20)
kde f'(x(0)) představuje Jacobiho matici
3/i dj\
f'(x) =
8 2
d xn
8x„
_8xt 2
M l
dx„ «-rozměrné funkce f(.tedy (1) ,2,-^J*. dalších iteracích pak
(2) 125 3~]t
L J
(3) ~[l
— J
Konvergence zřejmě podstatně rychlejší než Jacobiho metody.
4. (4