Kniha je úvodem do metod praktického modelování, analýzy, návrhu a optimalizace elektrotechnických zařízeni na číslicovém počítači. Výklad je doprovázen jednoduchými názornými příklady řešených úloh z různých odvětví elektrotechniky.Kniha je určena inženýrům a technikům, kteří se zabývají moderním návrhem elektrotechnických zařízení.
4.
Použijeme-li pro tentýž příklad Gaussovu-Seidelovu metodu, prvním
kroku dostaneme
1 4
1
rU) 2
x™ -------
\ 2
- 2
5
2
19
neboli (1) 12. Obdobně dostaneme dále
x =
|~15 5“lt
L j
x (3) 3~jt
l_8’ J
y(4-) |"1 t
L J
„ 51..9 1
1.3.tedy (1) ,2,-^J*.
Aplikujeme-li Taylorův rozvoj vektorovou funkci f(.(x ,0)) .2.
Tato metoda, nazývaná též metoda tečen, založena postupné linearizaci sou
stavy f(x) tak, jak odpovídá prvním dvěma členům Taylorova rozvoje.) bodě (0)
173
.20)
kde f'(x(0)) představuje Jacobiho matici
3/i dj\
f'(x) =
8 2
d xn
8x„
_8xt 2
M l
dx„ «-rozměrné funkce f(. dalších iteracích pak
(2) 125 3~]t
L J
(3) ~[l
— J
Konvergence zřejmě podstatně rychlejší než Jacobiho metody..) bodě <0), dostaneme
f(x) f(x<0)) f(x <0)). Metoda Newtonova-Raphsonova
V současných programech řešení soustav nelineárních algebraických rovnic
používá převážně metoda Newtonova-Raphsonova nebo některé její modifikace. (4.
Další iterace byly ještě přesnější.512’ ---
Poslední iterace přesného řešení dané soustavy liší již méně než 1%