Využití počítače při elektrotechnických návrzích

| Kategorie: Kniha  | Tento dokument chci!

Kniha je úvodem do metod praktického modelování, analýzy, návrhu a optimalizace elektrotechnických zařízeni na číslicovém počítači. Výklad je doprovázen jednoduchými názornými příklady řešených úloh z různých odvětví elektrotechniky.Kniha je určena inženýrům a technikům, kteří se zabývají moderním návrhem elektrotechnických zařízení.

Vydal: Alfa, vydavateľstvo technickej a ekonomickej litera­túry, n. p., 815 89 Bratislava, Hurbanovo nám. 3 Autor: Heřman Mann

Strana 163 z 480

Vámi hledaný text obsahuje tato stránku dokumentu který není autorem určen k veřejnému šíření.

Jak získat tento dokument?






Poznámky redaktora
. Hledané sekundární výstupní veličiny můžeme obvykle vyjádřit vztahy y &i(%3 X2’ ■■■■>Xn) y g2( n) \ ..... stejnosměrné řešení, které získáme popisu (4...i) <J' : . Soustavy rovnic (4...v„) 0 Í2(XV X2>..) jsou nelineární nebo lineární funkce.... (4-2) y >••■>*„) kde g;(.. ■■■' Xr...... (4-i) U 2.. Vektor x*, pro který jsou rovnice (4.., popis nelineárních statických modelů elektrických obvodů a soustav lze obvykle vyjádřit podobě soustavy nelineárních algebraických rovnic ft(vi-->'2. 2..2)....1) (4.1.......5) F(x, (4...1)] dosadíme do vztahů (4...6) položení této podmínky vy­ plývá, při stejnosměrném řešení dynamických modelů např..Analýza nelineárních statických soustav 4...6) Je-li dynamická soustava ustáleném stavu, primární veličiny jsou kon­ stantní představují případě elektrické soustavy její tzv.......3) splněny, nazýváme jejich řešením neboli kořenem.. Sekundární veličiny tedy nalezneme tak, primární veličiny [po jejich získání současným řešením rovnic (4.3) můžeme pohlížet jako zvláštní případ popisu nelineárních dynamických soustav již explicitním nebo implicitním tvaru x ř(x) (4. NELINEÁRNÍ y Jak jsme ukázali kap.....2) můžeme stručněji zapsat tvaru f(x) (4.) jsou nelineární funkce.) m-rozměrná vektorová funkce..................5) nebo (4.•*„) 0 kde ,x; jsou primární veličiny analyzované soustavy fř(.3) y g(x) (4-4) kde f(. proudy kapacitorů 163 . Na rovnice (4.....) «-rozměrná g(