V knize A. Beiser „Perspectives of Modem Physics“, jejíž překlad pod názvem „Úvod do moderní fyziky“ je předkládán českému čtenáři, je uplatněno spíše druhé hledisko (i když výklad začíná speciální teorií relativity). Zde by bylo možno se podivit disonanci, že anglické slovo „perspectives“ je přeloženo jako „úvod“. Slovo perspektiva, alespoň v češtině, nezdá se plně vystihovat skutečný obsah díla a zatímco v angličtině knih podobného obsahu jako kniha Beiserova vyšla celá řada a názvy mnohých z nich začínají slovem „Introduction“, tj. „Úvod“, v češtině takových knih máme poskrovnu, jsou-li vůbec k dispozici. Ve prospěch tohoto volnějšího překladu (jednoho slova) svědčí nakonec i autorova předmluva, v níž jsou jasně vyloženy jak jeho přístup k celé látce a jejímu výběru, tak i pojetí výkladu po stránce metodické. Z těchto Beiserových řádků je zřejmé, že jde o úvodní učebnici, nechceme-li se dovolávat přímo vlastního obsahu knihy.
Pozn.5 Rychlosti molekul
Maxwellovo-Boltzmannovo rozdělení hybností rychlostí molekul lze získat (15.
15.5. Průměrná rychlost těchto molekul je
v i(t>! v2) m/s m/s ,
i5 ztah (15. 15. rec.
Rychlost molekuly střední energií %kTje
(15-33) vstv yj(v2) =
Střední kvadratická
rychlost
neboť %mv2 %kT.
m
Zjistíme, počet molekul hybností mezi je
/ Maxwellovo-
(15.
375
.29),
uvědomíme-li vztahy
P2 2
u ,
2m
du .31) n(p) exp 2mkT) ,
(nmkT) -Boltzmannovo
rozdělení hybností
a počet molekul rychlostmi mezi du
r y/(2)nNm312 Maxwellovo-
(15.15. Tato rychlost uskv nazývá střední kvadratická rychlost,
protože druhou odmocninou střední hodnoty čtverce rychlosti molekuly není
stejná jako prostá střední rychlost Rozdíl mezi těmito dvěma druhy průměrů
ilustrujeme příkladem.32) často nazý axw ellovým zák rozdělení rychlostí.
Střední energie stejná pro všechny molekuly při 300 nezávislá jejich hmotě.5
Při teplotě 300 což přibližně pokojová teplota, bude
w 6,21.32) n(u) -----------v exp —mv 2kT) ,
(jtfej')3/2 -Boltzmannovo
rozdělení rychlostí
Tento poslední vztah, který poprvé odvodil Maxwell15,2) roce 1859, vynesen
na obr. Uvažujme soubor dvou molekul, jedné rychlostí m/s
a druhé rychlostí m/s. 10-21 J/molekulu 1/25 eV/molekulu