V knize A. Beiser „Perspectives of Modem Physics“, jejíž překlad pod názvem „Úvod do moderní fyziky“ je předkládán českému čtenáři, je uplatněno spíše druhé hledisko (i když výklad začíná speciální teorií relativity). Zde by bylo možno se podivit disonanci, že anglické slovo „perspectives“ je přeloženo jako „úvod“. Slovo perspektiva, alespoň v češtině, nezdá se plně vystihovat skutečný obsah díla a zatímco v angličtině knih podobného obsahu jako kniha Beiserova vyšla celá řada a názvy mnohých z nich začínají slovem „Introduction“, tj. „Úvod“, v češtině takových knih máme poskrovnu, jsou-li vůbec k dispozici. Ve prospěch tohoto volnějšího překladu (jednoho slova) svědčí nakonec i autorova předmluva, v níž jsou jasně vyloženy jak jeho přístup k celé látce a jejímu výběru, tak i pojetí výkladu po stránce metodické. Z těchto Beiserových řádků je zřejmé, že jde o úvodní učebnici, nechceme-li se dovolávat přímo vlastního obsahu knihy.
) Začneme výpočtem
125
. Jako první krok povšimneme,
že všechny částice alfa, přibližující jádru záměrnou vzdáleností b,
se rozptýlí úhel více, kde dáno prostřednictvím vztahem (5.17). částice rozptýlené úhel nebo více celkový účinný průřez ntAo
dopadající částice plocha terče A
= ntnb2 .
Dosazením (5.
j.
Musíme mít paměti, přilétající částice alfa skutečnosti rozptyluje dříve,
než dospěje bezprostřední blízkosti jádra, neprolétá nutně vzdálenosti b
od něho.
Ve shora uvedeném výpočtu předpokládalo, fólie dostatečně tenká, aby se
účinné průřezy sousedních jader navzájem nepřekrývaly, celá odchylka částice
alfa výsledkem jediného střetnutí jádrem.19) zjištění, jaká část svazku částic alfa energii 7,7 MeV se
rozptyluje úhel větší než 45° při dopadu zlatou fólii síle 10-7 (Tyto
hodnoty jsou typické pro energie částic alfa tloušťku fólií používaných Geigerem
a Marsdenem; pro srovnání, lidský vlas prům asi 10~4 m.S.4
5.8); plocha nb2 podle toho nazývá
účinný průřez interakce.19) . 5.18) nb2 . Obecný symbol pro účinný průřez <r, takže zde je
(5. Zlomek/ dopadajících částic alfa, rozptýlených
o úhel nebo více, tedy poměr mezi celkovým účinným průřezem ntAcr takového
xozptylu celkovou plochou terče tj.17) nelze přímo konfrontovat experimentem, protože není možné žádným
způsobem měřit záměrnou vzdálenost odpovídající tomu kterému pozorovanému
úhlu rozptylu.17) je
(5.
Užijme (5. zna
mená, částice alfa, původně mířící kteréhokoli bodu uvnitř plochy iib2 kolem
jádra, bude rozptýlena nejméně (obr.4 Rutherfordův vzorec pro rozptyl
Vztah (5.
Nyní uvažujme fólii síle jež obsahuje atom jednotkovém objemu. třeba uchýlit nepřímé strategii.
Počet terčových jader jednotkovou plochu nt, svazek částic alfa dopadající
na plochu tudíž střetává ntA jádry. Celkový účinný průřez rozptylu úhel 9
a více rovná počtu tyčových jader ntA násobenému účinným průřezem takového
rozptylu pro jedno jádro, neboli ntAo