Prvé vydanie celoštátnej učebnice Teoretická elektroenergetika z roku 1967 bolo v pomerne krátkom čase rozobrané a ukázala sa potreba novej učebnice približne rovnakého obsahu. Po odporúčaní Odbornej komisie bývalého Ministerstva školstva ČSSR a po schválení Kolégiom ministra školstva SSR dňa 15. 3. 1971 bolo poverené vydavateľstvo Alfa vydat a autori vypracovať druhé vydanie tejto celoštátnej učebnice, ktorú záujemcom predkladáme. Učebnica musela sa vzhľadom na stále rýchlejší rozmach opisovaných vedných odborov podstatne rozšíriť a doplniť. Medzi dvoma vydaniami došlo ...
, J,(z) cos i
Y —-------:---------- pro v4=cele cislo
sin vit
(12.45, 42, 46) vyplývá obecné řešení rovnice (12. Roste-li
imaginární část čísla =~~ nekonečna, pak
.
Porovnáním rovnic (12.42)
lze psát tvaru
f(r) ,(0)/o( /-) 2(0)H<o" (12'50)
r V2
Poněvadž j), jde Besselovy funkce komplexní proměnné.49)
je Besselova funkce třetího druhu indexem nazývaná též Hankelova funkce. TEORETICKÉ PODKLADY ŘEŠENÍ NĚKTERÝCH ELEKTROENERGETICKÝCH PROBLÉMŮ
kde obecně komplexní proměnná, parametr, který může nabývat reálných
nebo komplexních hodnot.382 12.48)
Yn(z) lim Yv(z) pro čísla celá
je Besselova funkce druhého druhu indexem nazývaná též Weberova funkce
(někde Neumannova, kterou někteří autoři definují jinak) a
H l'\z) +ÍY y(z) (12.
y(z) ,(v C2(v Yy(z) ,(v)/V(z) 2(v)H l'\z)
kde
( _________ -
áí, |argz|< ji
se nazývá Besselova funkce prvního druhu indexem v. Pro jakékoliv hodnoty paramteru lze psát řešení ve
tvaru
y(z) ,(v)y,(z) C2(r)y 2(z)
kde jsou jakákoliv dvě vzájemně lineárně nezávislá řešení; C,, jsou
koeficienty, závislé parametru Rovnice řeší rozvedením mocninových
řad výsledek lze psát tvaru např