Optimalizace v energetických soustavách

| Kategorie: Kniha  | Tento dokument chci!

Obsahem této knihy jsou především výsledky této více než dvacetileté vědeckovýzkumné práce. Nejde však přitom o výsledky toliko výzkumu. Jeho závěry byly uplatňovány ve výuce, ověřovány v diplomních pracích absolventů na katedře, konfrontovány s názory odborníků na domácích i mezinárodních konferencích a aplikovány v rámci tradiční spolupráce katedry s energetickou praxí.Tato publikace nemůže vyčerpat beze zbytku celou šíři problematiky optimalizace v energetických soustavách. Byl bych proto rád, kdyby se stala nejen užitečnou příručkou pro řídící pracovníky v energetických podnicích, ve výzkumných, projekčních a investorských organizacích a učební pomůckou pro posluchače studijního oboru Ekonomika a řízení energetiky na vysokých školách technických, ale také podnětem k vydávání dalších publikací, rozvíjejících a rozšiřujících její obsah.

Vydal: Academia Autor: Jiří Klíma

Strana 106 z 302

Vámi hledaný text obsahuje tato stránku dokumentu který není autorem určen k veřejnému šíření.

Jak získat tento dokument?






Poznámky redaktora
Jde tedy o hledání maxima funkce formulované takto: F rl0 .DOPORUČENÉ KRITÉRIUM EKONOMICKÉ EFEKTIVNOSTI INVESTIC 3. “f- r„0 [Kčs] (3..82) [Kčs] , při dodržení omezující podmínky Njpi ip2+ ..85) kde Lagrangeova funkce (lagrangián), X Lagrangeův součinitel. Je zřejmé, stejného výsledku (tj.. Jde tedy nalezení maxima funkce nezávisle proměnných (3..81) vysvítá, při maximálním ZcTpbude také r0c maximální. 111 .... r„0 max [Kčs] (3.vTp( rl0 r20+ .82) při dodržení jedné omezující podmínky (3. Zrn0 A(Nic—Nipi —..4..1.84) N ,pi Nif investiční náklady první n-té investice [Kčs]. ipn= ic přičemž Z rl0 /i(NiPi) Z r20 f2(N,p2) Z rn0 fn(Nipn) kde rl0 r„0 průměrný roční zisk první n-té investice [Kčs], (3.80) kde r]0 r„0 průměrný roční zisk první n-té investice [Kčs], Z cTp celkový zisk systému dobu [Kčs].83) (3..83)..80) (3. —Nipn) max [Kčs], (3. Náš cíl můžeme formulovat tak, máme maximalizovat funkci Z cTp= . Máme tedy rozdělit Nic tak, aby Z r0c rl0 r20 . Marginální zisk Vraťme nyní úkolu maximalizovat zisk úrovni systému dobu Tp.. Tento úkol řeší Lagrangeovou metodou pro výpočet vázaných extrémů (meto­ dou Lagrangeových multiplikátorů), našem případě vázaného maxima. maximalizace ZcT,) dosáhneme, budeme-li maximalizovat celkový průměrný roční zisk systému r0c, který dán vztahem Z r0c rl0 -f-Z r20 -f- .81) Z porovnání vztahů (3. rn0) max [Kčs] (3