Princip proudového chrániče Základní konstrukce proudových chráničů Vybavovací charakteristiky proudových chráničů Základní typy proudových chráničů dle jejich charakteristik Druhy reziduálních proudů z hlediska kombinace jejich původu a účinku Ochrana proudovými chrániči s ohledem na typ distribuční soustavy Selektivita proudových chráničů - kaskádování ochran Provozní spolehlivost instalací s proudovými chrániči Koordinace proudových chráničů a svodičů přepětí Zapojení proudových chráničů v aplikacích s neúplným počtem vodičů Normativní požadavky na použití proudových chráničů Pravidelné kontroly a revize proudových chráničů Základní provedení proudových chráničů Použití proudových chráničů v typických aplikacích Mýty a polopravdy týkající se proudových chráničů ...
Poznámky redaktora
Stejný proud, který protéká přes daného nebožáka, který uvěřil tom uto mýtu chtěl sobě
demonstrovat.
Z čeho vyplývá tento předpoklad lze jen těžko říci.
Dále nutné uvědomit, dvoudenní rodinný výlet letních měsících může znamenat značné ekonomické ztráty.Mýty polopravdy týkající se
proudových chráničů
Mýtus 1. Konec
konců tohoto důvodu obsahuje [26] národní výjimku, kdy určitých okolností možno použít ohřívač vody koupelně
bez proudového chrániče. Důležitým aspektem skutečnost, dojde odpojení celé instalace. Takto provedená instalace extrémně
náchylná nežádoucím vybavením. Nicméně nevyžadují svévolně. nežádoucímu vybavení tohoto chrániče. Toto situace, kdy elektroinstalaci nelze vůbec využívat. krátké přerušení magnetického
obvodu během testu způsobí demagnetizaci kotvy, čímž problém případné nefunkčnosti chrániče značné míry
eliminován. Jelikož chránič vybavuje rozmezí 15-30 mA, stačí několik nových spotřebičů typu ohřívač vody, pračka,
lednička pod. Nicméně
proud procházející tělem bude dán Ohmovým zákonem kde napětí napájecí soustavy celková impedance
poruchové smyčky, kde patrně podstatnou část bude tvořit impedance lidského těla dále zejména přechodový odpor mezi
tělem náhodným uzemněním. Chránič odpojí jakmile vyhodnotí, jím protéká dostatečně velký
reziduální proud.
V rodinném domě postačuje pouze čtyřpólový proudový chránič citlivostí vstupu instalace. Tento fakt ale není způsoben
proudovým chráničem, ale skutečností, jedná pouze jednopólový dotyk, čili přes danou osobu neuzavře obvod
poruchového proudu. Uvážíme-li možná řešení, které neodporují
bezpečnostním požadavkům, nabízejí podstatě tři.
Mýtus 3. Vlastním testováním nejen dokáže včas odhalit, je-li chránič nefunkční, ale současně
se tím zvýší jeho funkční spolehlivost. našem případě tedy odpojí dříve, než dojde zranění usmrcení osoby. Toto řešení nákladné navíc několika letech čeká majitele opětovná výměna, neboť nové spotřebiče zestárnou.
Problém však spočívá funkčnosti provozní spolehlivosti takovéto instalace. Jak již bylo uvedeno předchozím textu,
proudový chránič není omezující prvek, neomezuje prošlý proud.
Mýtus, jež jasně dokládá naprosté nepochopení funkce proudového chrániče. Nicméně obecně lze říci,
že plyne spíše nepochopení principu funkce proudového chrániče.
Použiji-li proudový chránič jmenovitým reziduálním proudem mA, bude mnou případě dotyku fáze protékat proud
maximálně mA, víc chránič nepustí. Zřejmě plyne nepochopení funkce proudového chrániče fyzikálního
principu kauzality. Proudový chránič nicméně zajistí to, zdravý člověk při tom dotyku neutrpí újmu způsobenou průchodem
elektrického proudu jeho tělem. Druhým řešením postarší, když stále plně funkční bezpečné tepelné spotřebiče nahradit
novými.
Testovat pravidelně proudové chrániče důvodu, vyžadují normy. Situace, kdy proudový chránič vypadne vždy pokaždé zapnutí takového spotřebiče není nijak nereálná.
Mýtus 2. Ona pravdivá část této informace spočívá skutečnosti,
že hlediska bezpečnostních požadavků norem skutečně vše pořádku, neboť veškeré části instalace jsou chráněny pomocí
chrániče jmenovitým reziduálním proudem mA.
Bohužel poměrně častá situace, která obvykle provázena slovy „já elektriku udělám levněji".
Pokud totiž dojde nežádoucímu vybavení chrániče (třeba důvodu, chvíli sepnul ohřívač vody), odpojí chladničky
53
.
Třetí možností úprava instalace tak, aby kromě bezpečnostních požadavků norem byla respektována její funkčnost a
provozní spolehlivost. potmě.
Samozřejmě musíme být korektní říci, soustavě nejedná mýtus ale holý fakt. Pouze dokáže zajistit, aby byl obvod, jímž protéká poruchový
proud, odpojen dříve, než způsobí škody.
Polopravda 1. Tím, jak tepelné spotřebiče stárnou, dochází nárůstu velikosti unikajících
proudů.
Pravdou je, normy toto vyžadují. Jak uvedeno předchozím textu, proudových
chráničů běžné konstrukce existuje nezanedbatelné riziko, chránič jisté době stane nefunkčním. Tudíž nemůže předpovědět, kdy onoho fázového
vodiče dotknu, aby odpojil dříve, než dotyk nastane. Prvním nejjednodušším trvalé odpojení tepelných spotřebičů. způsobeno tím, veškeré unikající proudy, které nových spotřebičů (zejména
tepelných) dosahují řádově jednotky jeden spotřebič, sčítají jsou vyhodnocovány pouze jediným použitým
chráničem. je
ale zjevně obecně nepřijatelné.
Když obvod vybaven proudovým chráničem dotknu fáze, nedostanu ránu.
Kromě nežádoucích vybavení unikajícími proudy tepelných spotřebičů hrozí velké míře vybavení odrušovacích filtrů
zářivkových svítidel atd. Proudový chránič sobě neobsahuje věšteckou kouli. tohoto důvodu
nutnost testování předepisují normy. Takže jednak těžko hledá
příčina problému, ale také musí hledat např. Běžná konstrukce chrániče velkým permanentním magnetem následek
magnetizaci kotvy, čímž negativně ovlivňují vypínací charakteristiky (citlivost) chrániče. Zásadním problémem skutečnost, uvedený jev nemusí
vyskytnout při předávání stavby instalace