Důležité vlastnosti kovů používaných v elektrotechnice
Měrný elektrický odpor (rezistivita)
Teplotní součinitel odporu
Supravodivost a hypervodivost
Hustota
Nejmenší má lithium, největší osmium
Teplota tání
Součinitel tepelné vodivosti
Největší mají čisté kovy
Rozdělení kovů podle teploty tání:
1. kovy s nízkou teplotou tání
2. kovy se střední teplotou tání
3. těžkotavitelné kovy
1. Základní elektrovodné materiály
Požadují se co nejmenší ztráty, tj. co nejmenší el. odpor.
Elektrický odpor závisí na rozměrech a na teplotě vodiče. Rezistivita elektrovodných
materiálů má hodnotu v rozmezí
ρ = 10-2
až 10-1
µ m
teplotní činitel u většiny čistých kovů je
αR = 4
Fyzikální mechanické vlastnosti jsou podobné grafitu. vrstvách trojnásobná koordinace atomů uhlíku
daná hybridizací. Jsou vyráběny směsi práškového grafitu prášku kovů, hlavně
stříbra mědi. Atomy vázané kovalentně jsou umístěny rozích pravidelných
šestiúhelníků tvořících vrstvy. Velikost rezistivity záporný teplotní součinitel odporu řadí grafit hranici
mezi vodiči polovodiči 10-5
m, -10-3
K-1
). Zvláštním rysem grafitu je, se
netaví, jeho oxid plyn, tím jsou jeho povrchové vlastnosti stálé. Podle stupně krystalinity obsahu
nečistot jeho rezistivita mění 10-5
do 10-4
m. Velké množství elektrotechnického uhlíku používá pro kartáče
elektrických strojů, které přivádějí proud rotujícím částem.
Čtvrtý valenční elektron může snadno pohybovat rovině vrstvy chová podobně jako
volné elektrony kovech. Uhlík přírodě vyskytuje jako krystalický anebo
amorfní. Pro elektrotechniku se
používá různě technologicky tepelně zpracovaný uhlík. grafitového prášku vyrábějí vrstvové rezistory pro
slaboproudou elektrotechniku nebo hmotové rezistory tvaru hranolů, válců desek, hodící
se pro elektrické vytápění.
Polymerní kompozity
Skládají polymerní matrice plnidel bázi kovových prášků nebo sazí formě grafitu.
Amorfní uhlík
Připravuje pyrolýzou organických látek, strukturu různým stupněm uspořádanosti a
velmi složitým prostorovým umístěním základních stavebních jednotek rozměrech nm. Krystalický uhlík koordinačním číslem diamantovou mřížku, atomy jsou
vázány silnou kovalentní vazbou, tvrdý, průsvitný nevodivý.
Materiály bázi uhlíku jeho kompozity
Do této skupiny řadíme elektrotechnický uhlík, vodivé plasty kompozity typu grafit-kov,
plast-kov plast-grafit.13
Bílá litina
Veškerý uhlík formě tvrdého křehkého cementitu, proto jsou bílé litiny extrémně
tvrdé křehké. Vrstvy jsou sobě poutány slabými vazebními silami druhého
řádu. Jako konstrukční
materiál nemají prakticky význam používají pouze tvrzených litin odlitky vysokou
odolností proti mechanickému opotřebení.10-6
až 10-8
m.
Obsahem plnidla matrici lze ovlivňovat hlavně rezistivitu kompozitu, která mění
v širokém rozsahu. Tím vysvětluje dobrá tepelná elektrická vodivost grafitu jeho
neprůsvitnost. Jejich rezistivita leží mezi 3. Technologií přípravy ovlivňujeme jeho
tvrdost koeficient tření.
Elektrotechnický uhlík
Je nejznámější nejdéle používaný.
Uhlíkové elektrody dále používají pro obloukové pece, oblouková svítidla, elektrolýzu,
galvanické články pro svařování. Struktura grafitu
s koordinačním číslem vrstevnatá. Prakticky nelze třískově obrábět, lze pouze brousit. Někdy používá
kompozitů grafit-kov. nutné, aby kromě vodivosti
měly žádanou tvrdost, pevnost, životnost malý součinitel tření. Tím jsou dány mechanické vlastnosti, malá pevnost štípatelnost směru vrstev. Pod perkolačním prahem (perkolační práh stav náhlého snížení
rezistivity vzrůstajícím obsahem rezistivita kompozitu blíží rezistivitě matrice (1012