Elektrická energie
Je pro svou čistotu, univerzálnost, možnost
přenosu dálku snadný rozvod nejužíva
nější sekundární energií. Ropa zemní plyn snad
no levně přepravovat velkém dálku
potrubím. výrobě železa oceli), tepel
ných motorech pak mění mechanickou
práci, sloužící pohonu nejrůznějších strojů
a dopravních prostředků. Někteří
filozofové toho dospěli pochmurným úva
hám tepelné smrti vesmíru. Paprsek fotonů, které laser
vysílá plynule nebo pulzech, dokáže energii
mimořádně zkoncentrovat přesně ovlá
dat. me
chanickou práci mění nejrůznější
typy elektromotorů účinností kolem až
98 která klesá jen při starších způsobech
regulace otáček rozběhu pomocí odporů.
e e
iplyn vodní energie
Problémy
e e
I%výfuk
' %chladicí voda topný
systém
100% %
s tepelnou energií
Tepelná energie hraje energetice nejvýznam
nější roli tím, náš život Zemi možný
jen díky určité pozemské teplotě prostředí. Její podstatou tok
volných elektronů při vodivém spojení míst
s rozdílným elektrickým potenciálem. říční vody,
z ovzduší, půdy teplejších odpadních vod
tzv. Přes mnohaletou snahu techniků
a energetiků dokonalejší účinnější spalo
vání není však tento proces náležitě „čistý“
a zplodiny hoření, prachový úlet exhalace na-
rušují biosféru. která jak pístových motorů, tak
u parních turbín pohybuje rozmezí do
40 jen případě předřazení spalovací tur
bíny parní turbíně tzv. Jaká část tepla může být přeměněna uži
tečnou práci, záleží rozdílu teplot obou tě
les, označovaných výstižněji „lázně“. Tato zářivá energie lecos společ
ného energií elektrickou (jde elektromag
netické vlny), jenže jejím nositelem nejsou
elektrony, nýbrž neutrální částice zvané fo
tony.
Elektrická energie jen jeden podstatný
nedostatek: nedá skladovat zásoby!
Zářivá energie
Projevuje jako elektromagnetické vlny
nejrůznějších vlnových délek centimetro
vých mikrovln přes infračervené, viditelné
a ultrafialové záření tvrdé záření kosmic
ké. Jsou zalo
ženy tzv.
Nejmodernější regulační elektropohony říze
né změnou kmitočtu napětí tyristorových
měničích dokáží minimální ztrátou plynule
regulovat otáčky odpadá použití převodo
vých skříní mechanismů. Naproti
tomu solární fotovoltaické články, obvykle
v podobě panelů křemíkové bázi, dosahují
jen špičkových výrobcích (například pro na
pájení družic elektřinou) účinnosti blížící se
k Praktická účinnost ale poloviční, a
proto různé prestižní programy, jako např. Obvykle stlače
ním pomocného média převedou tzv.
Měníme-li teplo práci periodicky pracu
jícím tepelném stroji (motoru), pak určitá část
tepla odebraná teplejšího tělesa (T(), které
fyzikové mluví jako ohříváku, nutně pře
dávána tělesu chladnějším chladiči -
(T,). mohlo postupně vyrovnat roz
díl teplot tepelný spád zmizel.Kuriózním zařízením řádku přeměn me
chanické energie teplo jsou beze
sporu tepelná čerpadla, vykazující praktickou
účinnost 160 tím, přečerpávají teplo
z chladnějšího prostředí teplejší. Teplá tělesa tak ne
zadržitelně ochlazují chladná tělesa přitom
oteplují. takovému zne
hodnocování energie naší planetě však
naštěstí pro nás dochází nesmírně pomalu. Nikoliv
však rozporu druhou větou termodynamic
kou, ale tím, odčerpávají např.
Chemická energie
Hraje našem životě energetice rozho
dující úlohu. nízkopotenciálové teplo. Může však zlepšo
vat zvyšováním vstupní teploty sa
mozřejmě jen hranici, kam vydrží
použité materiály zařízení. Nižší účinností
se vyznačuje jen přeměna energie světlo
(3 4). principu chemická ener
gie uvolňuje úkor vazeb atomů molekul
spalovaných látek. Využíváme formou spalování
fosilních paliv, vzniklých před miliony let za
konzervováním pod povrchem naší planety. Zjednodušený dia
gram energetické bilance moderního tepelného
čerpadla poháněného pomal uběžným dieselo
vým otorem ukazuje, jak odčerpáním
z okolního prostředí využitím odpadní energie
z výfuku chlazení motoru lze 100 spotře
bované primární energie (paliva pro diesel) zís
kat pro vytápění 160 Takovou „lest“ proti
přírodě dovolují zatím menší jednotky výko
nech 500 kW. Potřebujeme-li získat mechanickou
práci tepla, což základním principem všech
druhů tepelných motorů (parními stroji počí
naje, turbínami spalovacími motory konče),
je nutné vytvořit určitý tepelný spád. Slu
neční záření, které naší planetu přenáší
životodárnou energii (na osvětlený m2dopa
dá výkon přibližně kW), dokáží příznivou
účinností přímo využít zejména so
lární tepelné kolektory. nejrozšířenějším případě
(spalování uhlí uhlovodíkových paliv) probí
há spalování zjednodušeně tak, zahřátím roz
kmitané atomy uhlíku srážkami molekula-
13
. Slouží přímo
k vytápění nebo důležitých průmyslových pro
cesech (např.
Zvláštním případem využití zářivé energie
jsou lasery, vynalezené roku 1960.
Se zjednodušením které předem
omlouváme fyzikům, pokusme vysvětlit,
proč právě tento nejužívanější způsob, který
se opírá energetika, probíhá poměrně nízkou
účinností. „Sto
tisíc solárních střech“,jak Německu, tak Ja
ponsku zcela zklamaly. tep
lo vysokopotenciální, které pak využít
například vytápění. Stává neopotřebitelným nejuniverzál
něji použitelným nástrojem technologů (řeže,
propaluje nebo svařuje nejtvrdší materiály),
chirurgům nahrazuje skalpel, dokáže přenášet
nesmírná kvanta informací (optické spoje).
Vytěžená upravená zušlechtěná paliva lze
dobře skladovat.
Carnotova cyklu účinnost tepelné přemě
ny ideálních podmínek dána vzorcem:
T -T
r|= 100 (%)
Maturantovi bude jasné, aby účinnost byla
stoprocentní, musela teplota ochlazení
rovnat absolutní nule, tedy prakticky nedostup
né hodnotě -273,15 °C. stimulované emisi kvantových pře
skoků elektronů nejrůznějších látkách. Okruh uváděn čin
nost buď elektricky poháněným kompresorem,
nebo spalovacím motorem. Lopatky spalovacích turbín keramic
kým nástřikem dutinovým chlazením odolá
vají dlouhodobě 000 °C. Podle energetického biologického účin
ku využíváme nejrůznějším úkolům. Nej
více jsou rozšířeny lasery rubínové, polovodi
čové plynové, avšak jak ukázalo, „lase-
rování“ lze využít nejrůznější jiné materiály
a formy energie. vysokou účin
ností pracují transformátory, invertory kře
míkové usměrňovače 3), které upravují
napětí prům yslovým itočtem nás
50 Hz) podle potřeby jiné napětí, jiný kmi
točet, nebo napětí usměrňují. příčinou
oné zarážející nízké účinnosti tepelných mo
torů. Tepel
ná energie tvoří přesto oporu energetiky, protože
teplo jako médium zprostředkovává převod che
mické energie spalovaných paliv. Podle tzv. paroplynovém cyklu
překročí málo Takové účinnosti dosa
hují vyvíjené magnetohydrodynamickégene
rátory (MHD), využívající energie proudících
žhavých elektricky vodivých spalin (horké
ho plazmatu) indukci stejnosměrného prou
du vinutí cívek zabudovaných stěn žáru
vzdorného kanálu (přeměna 3). Nejmodernější
parní turbíny pracují teplotou páry nejvýše
640 °C. Slouží ohřívání užit
kové vody, vyhřívání bazénů nebo ohřívání
vzduchu sušárnách dřeva píce. Přírodě
se tento postup kupodivu zalíbil také většinu
jiných energií ráda přeměňuje teplo (napří
klad třením odpory)