Předložený studijní materiál slouží jako základní studijní materiál distanční formy
studia předmětu Elektrotechnika 2, který navazuje na předmět Elektrotechnika 1 a spolu s ním
vytváří nezbytně nutné teoretické základy společné pro všechny elektrotechnické obory, které
jsou potřebné pro studium předmětů specializací v dalších ročnících studia.
Autor: Doc. Ing. Jiří Sedláček, CSc. Prof. Ing. Juraj Valsa, CSc.
Strana 75 z 186
Vámi hledaný text obsahuje tato stránku dokumentu který není autorem určen k veřejnému šíření.
Hovoříme pak ustáleném
harmonickém stavu.
Řešení obecně skládá dvou složek.
ustálenou neboli stacionární složkou, jejíž charakter závisí především charakteru budicího
signálu. přechodná složka, kratší nebo
delší době prakticky zanikne zanedbat. řešení obvodu používáme symbolický zápis pomocí komplexních
fázorů pro proudy napětí komplexních impedancí resp. Znamená to, všechna napětí proudy, které v
těchto obvodech pozorujeme, sledují okamžitě bez jakéhokoliv zpoždění variace signálů,
jimiž obvod buzen. Setrvačné obvody jsou popsány
soustavou obyčejných lineárních diferenciálních rovnic konstantními koeficienty.Elektrotechnika 75
5. případě, budicí signál periodický, je
ustálené řešení také periodické když tvarově budicího signálu obecném případě liší)
a stejnou periodu jako budicí signál. připojením, odpojením nebo zkratováním větve. Změny budicích signálů různých
místech obvodu projeví určitým časovým zpožděním časový průběh jednotlivých napětí a
proudů obvodu obecném případě vzájemně liší.1 Úvod
Až dosud jsme analyzovali děje lineárních rezistorových obvodech ustálené
periodické děje obvodech, obsahujících vedle rezistorů také cívky kondenzátory.
zvukových kmitočtech nebo kmitočtech řádu stovek megahertzů oblasti velmi krátkých
rádiových vln.
Nejprve zmíníme způsobech formulace výchozích diferenciálních rovnic.
Obvod pak popsán soustavou lineárních rovnic komplexními časově neproměnnými
koeficienty. akumulační obvodové prvky), jsou setrvačné. Navíc
však závisí také energii, která byla počátku sledovaného děje akumulována v
elektrickém poli kondenzátorů magnetickém poli cívek. Pouze případě, budicí signál harmonický
(sinusový), ustálené řešení všech uzlech větvích obvodu také harmonické je
charakterizováno určitou amplitudou fázovým posuvem. admitancí pro popis větví obvodu.
V této kapitole věnujeme metodám analýzy setrvačných lineárních obvodů ohledem
na přechodné děje. Dále zavedeme operátorovou metodu řešení diferenciálních
rovnic, založenou Laplaceově transformaci ukážeme, jak tímto postupem řeší složitější
situace, pro které klasická metoda byla příliš těžkopádná. Zmíníme také numerických
postupech, vhodných pro rutinní výpočty počítači. Je-li budicí signál konstantní (stejnosměrné napětí nebo proud), jsou ustálená napětí a
ustálené proudy obvodu rovněž stejnosměrné. Poměry obvodu jsou přitom zcela stejné, jestliže pracujeme nízkých, např. Je-li budicí signál např. sinusový, jsou všechna napětí proudy v
obvodu rovněž sinusové mají stejný kmitočet stejnou fázi (případně fázi 180 jako budicí
signál. Poté
ukážeme, jak tyto rovnice řeší tzv. Budeme sledovat přechodné děje vyvolané zásadě dvěma příčinami:
1) budicím signálem obecného průběhu,
2) náhlou změnou obvodu, vyvolanou např. První nich, tzv.
°
Obvody obsahující také cívky kondenzátory, případně cívky vzájemnou vazbou
(tzv. matematického hlediska jsou rezistorové obvody popsány soustavou
lineárních algebraických rovnic konstantními koeficienty. Řešení
poměrů obvodu závisí budicích signálech podobně jako obvodů rezistorových. klasickou metodou řadě typických příkladů budeme
použití této metody ilustrovat. Odezva obvodu pak dána druhou, tzv. závěr pak budeme definovat
přechodnou impulsovou charakteristiku lineárního obvodu (dvojbranu) ukážeme, jak tyto
.
Rezistorové obvody jsou nesetrvačné