Elektromagnetismus

| Kategorie: Skripta  | Tento dokument chci!

Cílem předmětu je seznámení se základními pojmy teorie elektromagnetického pole. Po prostudování modulu by měl student být schopen orientovat se v základní terminologii elektrotechniky, řešit elementární úlohy z elektro/magnetostatického pole, stacionárního a kvazistacionárního pole a měl by znát základní principy šíření elektromagnetických vln.

Vydal: VŠB – Technická univerzita Ostrava Autor: Lubomír Ivánek

Strana 146 z 183

Vámi hledaný text obsahuje tato stránku dokumentu který není autorem určen k veřejnému šíření.

Jak získat tento dokument?






Poznámky redaktora
27) jiţ byla zmínka.2 koncentruje energie d2 W 1 /2ddQ, přičemţ = Edl Dds potom energie trubici d2 W 1 /2EDdV (4. Hustota energie elektrostatického pole O výpočtu hustoty energie mezi deskami kondenzátoru vztah (4. Zde vliv vázaných nábojů zahrnut hodnotě potenciálů.Energie síly elektromagnetických polích 136 Energie elektrostatického pole kondenzátoru Elektrody kondenzátoru můţeme povaţovat soustavu dvou nabitých těles náboji s napětím 2.27) Energie nábojů zadaných hustotou  Náboj rozprostřený prostoru hustotou (x,y,z) vytváří potenciál (x,y,z).4. 4.30) dosaďme div Dn We 1 /2    SiSV dsdVdiv nDD 2 1 / (4. 4.29) Vztahy platí jak vakuu, tak dielektriku.26) a hustota energie mezi deskami kondenzátoru w 1 /2 ED (4.32) První člen třetí člen vyruší úpravě podle Gaussovy věty obr.3 . Potom energie We 1 /2[1Q1 2(-Q1)] 1 /2Q12) 1 /2Q1U (4.25) Protoţe energie nemůţe měnit skokem (kondenzátor musel nekonečně malou dobu nabít nekonečně velkým proudem), nemůže měnit skokem ani napětí kondenzátoru.28) Potenciál na rozdíl jiţ potenciál výsledný, zahrnující sobě vlastní příspěvek, který jiţ není nekonečný, jako osamoceného náboje koncentrovaného nulovém objemu, ale naopak zanedbatelný.2 obr. V elementární indukční trubici mezi deskami kondenzátoru podle obr. Analogicky pro plošně rozloţený náboj We 1 /2   S ds (4.24) Pro označení lze psát různé vyjádření energie W 1 /2QU 1 /2CU2 = Q2 / (4. Prozkoumejme nyní poměry oblasti libovolného tvaru obr.3 mezi dvěma elektrodami náboji hustoty Mezi elektrodami hustota nábojů Celková energie oblasti mezi elektrodami je We 1 /2    V SiS dsdV  2 1 / (4.31) Z identity div (D) div Dgrad   div div (D) Dgrad div (D) DE We 1 /2 V  div (D)dV 1 /2 V  EDdV 1 /2 S Si  Dds (4. Energie přiřazená náboji dQ dV je We        V n kk dVQ  2 1 2 1 1 (4.4