Na závěr děkuji recensentu skripta B. Sedlákovi za pozorné pročtení skripta a za cenné připomínky, které pomohly zlepšit text. Můj dík patří rovněž pracovnicím katedry M. Teňákové, J. Beranově a L. Kadeřábkové za velmi přesné a pečlivé zpracování rukopisu a nakreslení obrázků.
1. (1,54) nebo (1,55) klesá čtvercem vzdálenosti. 1. Uvnitř koule, tj.87b)
Potenciálu vně vodivé koule ubývá mírněji než intensity pole, která podle
rov.4), uvnitř nabitých vodičů libovolného tvaru
není rovnovážném stavu volný náboj intensita elektrostatickéha pole je
rovna nule.
Odtud plyne, potenciál pro střed nevodivé koule hodnotu
f í*/2 této hodnoty rostoucím trvale klesá.4.
pro děje pokles potenciálu podle rov. 1,37).
. Potenciál
v oboru není proto konstantní jako koule vodivé platí pro něj
y ----- §--- retr =
J ‘tn /■* ‘tV *
Q (1,88)
íff,/!1 £. (1,63) přímo úměrně vzdáleností
f středu koule, němž její hodnota nulová (obr. Protože siločáry jsou kolmé ekvipotenciální plochy (čl. (1*88^ vně koule )
podle vztahu (1,87a), který lze napsat tvaru
y eg,
Í7 •89)
2
Na povrchu koule hodnota potenciálu J>R . Pole existuje jen vně vodiče, přičemž vektor intensity má
v bodech ležících těsně nad povrchem směr normály povrchu vodiče.3. zna
mená, siločáry vystupují kolmo povrchu vodiče, popřipadř kolmo něho
vstupují.r~
která rovná potenciálu povrchu koule táto hodnoty s
rostoucí vzdáleností potenciál klesá, takže pro řídl v*ta-
hem
r {187B)
popřípadě zavedení plodná hustoty náboje vztahem
y ci.
Poznali jsme (čl.2),
plyne toho důležitý závěr, povrch vodiče ekvipotenciální plochou.
Uvnitř nevodivé koule nábojem rozloženým rovnoměrná celém jejím
objemu roste intensita pole podle rov