Na závěr děkuji recensentu skripta B. Sedlákovi za pozorné pročtení skripta a za cenné připomínky, které pomohly zlepšit text. Můj dík patří rovněž pracovnicím katedry M. Teňákové, J. Beranově a L. Kadeřábkové za velmi přesné a pečlivé zpracování rukopisu a nakreslení obrázků.
1,37).4), uvnitř nabitých vodičů libovolného tvaru
není rovnovážném stavu volný náboj intensita elektrostatickéha pole je
rovna nule. 1.r~
která rovná potenciálu povrchu koule táto hodnoty s
rostoucí vzdáleností potenciál klesá, takže pro řídl v*ta-
hem
r {187B)
popřípadě zavedení plodná hustoty náboje vztahem
y ci.
Odtud plyne, potenciál pro střed nevodivé koule hodnotu
f í*/2 této hodnoty rostoucím trvale klesá. Pole existuje jen vně vodiče, přičemž vektor intensity má
v bodech ležících těsně nad povrchem směr normály povrchu vodiče. 1.4. Protože siločáry jsou kolmé ekvipotenciální plochy (čl.87b)
Potenciálu vně vodivé koule ubývá mírněji než intensity pole, která podle
rov. zna
mená, siločáry vystupují kolmo povrchu vodiče, popřipadř kolmo něho
vstupují.3. (1,54) nebo (1,55) klesá čtvercem vzdálenosti. (1*88^ vně koule )
podle vztahu (1,87a), který lze napsat tvaru
y eg,
Í7 •89)
2
Na povrchu koule hodnota potenciálu J>R . Potenciál
v oboru není proto konstantní jako koule vodivé platí pro něj
y ----- §--- retr =
J ‘tn /■* ‘tV *
Q (1,88)
íff,/!1 £. Uvnitř koule, tj.
Uvnitř nevodivé koule nábojem rozloženým rovnoměrná celém jejím
objemu roste intensita pole podle rov. (1,63) přímo úměrně vzdáleností
f středu koule, němž její hodnota nulová (obr.
.
pro děje pokles potenciálu podle rov.2),
plyne toho důležitý závěr, povrch vodiče ekvipotenciální plochou.
Poznali jsme (čl